Spaces:
Runtime error
Runtime error
Nagesh Muralidhar
commited on
Commit
·
1aa4e0c
1
Parent(s):
1182528
Assignment 15 submission
Browse files- .env.sample +5 -0
- .gitignore +6 -0
- Dockerfile +29 -0
- app.py +202 -0
- chainlit.md +1 -0
- data/paul_graham_essays.txt +0 -0
- pyproject.toml +22 -0
- solution_app.py +190 -0
- uv.lock +0 -0
.env.sample
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# !!! DO NOT UPDATE THIS FILE DIRECTLY. MAKE A COPY AND RENAME IT `.env` TO PROCEED !!! #
|
| 2 |
+
HF_LLM_ENDPOINT="YOUR_LLM_ENDPOINT_URL_HERE"
|
| 3 |
+
HF_EMBED_ENDPOINT="YOUR_EMBED_MODEL_ENDPOINT_URL_HERE"
|
| 4 |
+
HF_TOKEN="YOUR_HF_TOKEN_HERE"
|
| 5 |
+
# !!! DO NOT UPDATE THIS FILE DIRECTLY. MAKE A COPY AND RENAME IT `.env` TO PROCEED !!! #
|
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.env
|
| 2 |
+
__pycache__/
|
| 3 |
+
.chainlit
|
| 4 |
+
*.faiss
|
| 5 |
+
*.pkl
|
| 6 |
+
.files
|
Dockerfile
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Get a distribution that has uv already installed
|
| 2 |
+
FROM ghcr.io/astral-sh/uv:python3.13-bookworm-slim
|
| 3 |
+
|
| 4 |
+
# Add user - this is the user that will run the app
|
| 5 |
+
# If you do not set user, the app will run as root (undesirable)
|
| 6 |
+
RUN useradd -m -u 1000 user
|
| 7 |
+
USER user
|
| 8 |
+
|
| 9 |
+
# Set the home directory and path
|
| 10 |
+
ENV HOME=/home/user \
|
| 11 |
+
PATH=/home/user/.local/bin:$PATH
|
| 12 |
+
|
| 13 |
+
ENV UVICORN_WS_PROTOCOL=websockets
|
| 14 |
+
|
| 15 |
+
# Set the working directory
|
| 16 |
+
WORKDIR $HOME/app
|
| 17 |
+
|
| 18 |
+
# Copy the app to the container
|
| 19 |
+
COPY --chown=user . $HOME/app
|
| 20 |
+
|
| 21 |
+
# Install the dependencies
|
| 22 |
+
# RUN uv sync --frozen
|
| 23 |
+
RUN uv sync
|
| 24 |
+
|
| 25 |
+
# Expose the port
|
| 26 |
+
EXPOSE 7860
|
| 27 |
+
|
| 28 |
+
# Run the app
|
| 29 |
+
CMD ["uv", "run", "chainlit", "run", "solution_app.py", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import chainlit as cl
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
from operator import itemgetter
|
| 5 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
| 6 |
+
from langchain_community.document_loaders import TextLoader
|
| 7 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
| 10 |
+
from langchain_core.prompts import PromptTemplate
|
| 11 |
+
from langchain.schema.output_parser import StrOutputParser
|
| 12 |
+
from langchain.schema.runnable import RunnablePassthrough
|
| 13 |
+
from langchain.schema.runnable.config import RunnableConfig
|
| 14 |
+
from tqdm.asyncio import tqdm_asyncio
|
| 15 |
+
import asyncio
|
| 16 |
+
from tqdm.asyncio import tqdm
|
| 17 |
+
|
| 18 |
+
# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
|
| 19 |
+
# ---- ENV VARIABLES ---- #
|
| 20 |
+
"""
|
| 21 |
+
This function will load our environment file (.env) if it is present.
|
| 22 |
+
|
| 23 |
+
NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
|
| 24 |
+
"""
|
| 25 |
+
load_dotenv()
|
| 26 |
+
|
| 27 |
+
"""
|
| 28 |
+
We will load our environment variables here.
|
| 29 |
+
"""
|
| 30 |
+
HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
|
| 31 |
+
HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
|
| 32 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
| 33 |
+
|
| 34 |
+
# ---- GLOBAL DECLARATIONS ---- #
|
| 35 |
+
|
| 36 |
+
# -- RETRIEVAL -- #
|
| 37 |
+
"""
|
| 38 |
+
1. Load Documents from Text File
|
| 39 |
+
2. Split Documents into Chunks
|
| 40 |
+
3. Load HuggingFace Embeddings (remember to use the URL we set above)
|
| 41 |
+
4. Index Files if they do not exist, otherwise load the vectorstore
|
| 42 |
+
"""
|
| 43 |
+
### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
|
| 44 |
+
### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
|
| 45 |
+
text_loader = TextLoader("data/paul_graham_essays.txt")
|
| 46 |
+
documents = text_loader.load()
|
| 47 |
+
|
| 48 |
+
### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
|
| 49 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 50 |
+
split_documents = text_splitter.split_documents(documents)
|
| 51 |
+
|
| 52 |
+
### 3. LOAD HUGGINGFACE EMBEDDINGS
|
| 53 |
+
hf_embeddings = HuggingFaceEndpointEmbeddings(
|
| 54 |
+
model=HF_EMBED_ENDPOINT,
|
| 55 |
+
task="feature-extraction",
|
| 56 |
+
huggingfacehub_api_token=os.environ["HF_TOKEN"],
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
async def add_documents_async(vectorstore, documents):
|
| 60 |
+
await vectorstore.aadd_documents(documents)
|
| 61 |
+
|
| 62 |
+
async def process_batch(vectorstore, batch, is_first_batch, pbar):
|
| 63 |
+
if is_first_batch:
|
| 64 |
+
result = await FAISS.afrom_documents(batch, hf_embeddings)
|
| 65 |
+
else:
|
| 66 |
+
await add_documents_async(vectorstore, batch)
|
| 67 |
+
result = vectorstore
|
| 68 |
+
pbar.update(len(batch))
|
| 69 |
+
return result
|
| 70 |
+
|
| 71 |
+
async def main():
|
| 72 |
+
print("Indexing Files")
|
| 73 |
+
|
| 74 |
+
vectorstore = None
|
| 75 |
+
batch_size = 32
|
| 76 |
+
|
| 77 |
+
batches = [split_documents[i:i+batch_size] for i in range(0, len(split_documents), batch_size)]
|
| 78 |
+
|
| 79 |
+
async def process_all_batches():
|
| 80 |
+
nonlocal vectorstore
|
| 81 |
+
tasks = []
|
| 82 |
+
pbars = []
|
| 83 |
+
|
| 84 |
+
for i, batch in enumerate(batches):
|
| 85 |
+
pbar = tqdm(total=len(batch), desc=f"Batch {i+1}/{len(batches)}", position=i)
|
| 86 |
+
pbars.append(pbar)
|
| 87 |
+
|
| 88 |
+
if i == 0:
|
| 89 |
+
vectorstore = await process_batch(None, batch, True, pbar)
|
| 90 |
+
else:
|
| 91 |
+
tasks.append(process_batch(vectorstore, batch, False, pbar))
|
| 92 |
+
|
| 93 |
+
if tasks:
|
| 94 |
+
await asyncio.gather(*tasks)
|
| 95 |
+
|
| 96 |
+
for pbar in pbars:
|
| 97 |
+
pbar.close()
|
| 98 |
+
|
| 99 |
+
await process_all_batches()
|
| 100 |
+
|
| 101 |
+
hf_retriever = vectorstore.as_retriever()
|
| 102 |
+
print("\nIndexing complete. Vectorstore is ready for use.")
|
| 103 |
+
return hf_retriever
|
| 104 |
+
|
| 105 |
+
async def run():
|
| 106 |
+
retriever = await main()
|
| 107 |
+
return retriever
|
| 108 |
+
|
| 109 |
+
hf_retriever = asyncio.run(run())
|
| 110 |
+
|
| 111 |
+
# -- AUGMENTED -- #
|
| 112 |
+
"""
|
| 113 |
+
1. Define a String Template
|
| 114 |
+
2. Create a Prompt Template from the String Template
|
| 115 |
+
"""
|
| 116 |
+
### 1. DEFINE STRING TEMPLATE
|
| 117 |
+
RAG_PROMPT_TEMPLATE = """\
|
| 118 |
+
<|start_header_id|>system<|end_header_id|>
|
| 119 |
+
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
|
| 120 |
+
|
| 121 |
+
<|start_header_id|>user<|end_header_id|>
|
| 122 |
+
User Query:
|
| 123 |
+
{query}
|
| 124 |
+
|
| 125 |
+
Context:
|
| 126 |
+
{context}<|eot_id|>
|
| 127 |
+
|
| 128 |
+
<|start_header_id|>assistant<|end_header_id|>
|
| 129 |
+
"""
|
| 130 |
+
|
| 131 |
+
### 2. CREATE PROMPT TEMPLATE
|
| 132 |
+
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
| 133 |
+
|
| 134 |
+
# -- GENERATION -- #
|
| 135 |
+
"""
|
| 136 |
+
1. Create a HuggingFaceEndpoint for the LLM
|
| 137 |
+
"""
|
| 138 |
+
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
|
| 139 |
+
hf_llm = HuggingFaceEndpoint(
|
| 140 |
+
endpoint_url=HF_LLM_ENDPOINT,
|
| 141 |
+
temperature=0.7,
|
| 142 |
+
max_new_tokens=512,
|
| 143 |
+
top_p=0.95,
|
| 144 |
+
return_full_text=False,
|
| 145 |
+
huggingfacehub_api_token=HF_TOKEN,
|
| 146 |
+
model_kwargs={
|
| 147 |
+
# Remove the parameters mentioned above from model_kwargs
|
| 148 |
+
# Keep any other model-specific parameters here
|
| 149 |
+
}
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
@cl.author_rename
|
| 153 |
+
def rename(original_author: str):
|
| 154 |
+
"""
|
| 155 |
+
This function can be used to rename the 'author' of a message.
|
| 156 |
+
|
| 157 |
+
In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
|
| 158 |
+
"""
|
| 159 |
+
rename_dict = {
|
| 160 |
+
"Assistant" : "Paul Graham Essay Bot"
|
| 161 |
+
}
|
| 162 |
+
return rename_dict.get(original_author, original_author)
|
| 163 |
+
|
| 164 |
+
@cl.on_chat_start
|
| 165 |
+
async def start_chat():
|
| 166 |
+
"""
|
| 167 |
+
This function will be called at the start of every user session.
|
| 168 |
+
We will build our LCEL RAG chain here, and store it in the user session.
|
| 169 |
+
"""
|
| 170 |
+
### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
|
| 171 |
+
lcel_rag_chain = (
|
| 172 |
+
{
|
| 173 |
+
"context": itemgetter("query") | hf_retriever,
|
| 174 |
+
"query": itemgetter("query")
|
| 175 |
+
}
|
| 176 |
+
| rag_prompt
|
| 177 |
+
| hf_llm
|
| 178 |
+
| StrOutputParser()
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
|
| 182 |
+
|
| 183 |
+
@cl.on_message
|
| 184 |
+
async def main(message: cl.Message):
|
| 185 |
+
"""
|
| 186 |
+
This function will be called every time a message is recieved from a session.
|
| 187 |
+
|
| 188 |
+
We will use the LCEL RAG chain to generate a response to the user query.
|
| 189 |
+
|
| 190 |
+
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
|
| 191 |
+
"""
|
| 192 |
+
lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
|
| 193 |
+
|
| 194 |
+
msg = cl.Message(content="")
|
| 195 |
+
|
| 196 |
+
async for chunk in lcel_rag_chain.astream(
|
| 197 |
+
{"query": message.content},
|
| 198 |
+
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
| 199 |
+
):
|
| 200 |
+
await msg.stream_token(chunk)
|
| 201 |
+
|
| 202 |
+
await msg.send()
|
chainlit.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# FILL OUT YOUR CHAINLIT MD HERE WITH A DESCRIPTION OF YOUR APPLICATION
|
data/paul_graham_essays.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pyproject.toml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "15-app"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Session 15 - Open Source Endpoints"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.09"
|
| 7 |
+
dependencies = [
|
| 8 |
+
"asyncio===3.4.3",
|
| 9 |
+
"chainlit==2.2.1",
|
| 10 |
+
"huggingface-hub==0.27.0",
|
| 11 |
+
"langchain-huggingface==0.1.2",
|
| 12 |
+
"langchain==0.3.19",
|
| 13 |
+
"langchain-community==0.3.18",
|
| 14 |
+
"langsmith==0.3.11",
|
| 15 |
+
"python-dotenv==1.0.1",
|
| 16 |
+
"tqdm==4.67.1",
|
| 17 |
+
"langchain-openai==0.3.7",
|
| 18 |
+
"langchain-text-splitters==0.3.6",
|
| 19 |
+
"jupyter>=1.1.1",
|
| 20 |
+
"faiss-cpu>=1.10.0",
|
| 21 |
+
"websockets>=15.0",
|
| 22 |
+
]
|
solution_app.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import chainlit as cl
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
from operator import itemgetter
|
| 5 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
| 6 |
+
from langchain_community.document_loaders import TextLoader
|
| 7 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
| 10 |
+
from langchain_core.prompts import PromptTemplate
|
| 11 |
+
from langchain.schema.output_parser import StrOutputParser
|
| 12 |
+
from langchain.schema.runnable import RunnablePassthrough
|
| 13 |
+
from langchain.schema.runnable.config import RunnableConfig
|
| 14 |
+
from tqdm.asyncio import tqdm_asyncio
|
| 15 |
+
import asyncio
|
| 16 |
+
from tqdm.asyncio import tqdm
|
| 17 |
+
|
| 18 |
+
# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
|
| 19 |
+
# ---- ENV VARIABLES ---- #
|
| 20 |
+
"""
|
| 21 |
+
This function will load our environment file (.env) if it is present.
|
| 22 |
+
|
| 23 |
+
NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
|
| 24 |
+
"""
|
| 25 |
+
load_dotenv()
|
| 26 |
+
|
| 27 |
+
"""
|
| 28 |
+
We will load our environment variables here.
|
| 29 |
+
"""
|
| 30 |
+
HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
|
| 31 |
+
HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
|
| 32 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
| 33 |
+
|
| 34 |
+
# ---- GLOBAL DECLARATIONS ---- #
|
| 35 |
+
|
| 36 |
+
# -- RETRIEVAL -- #
|
| 37 |
+
"""
|
| 38 |
+
1. Load Documents from Text File
|
| 39 |
+
2. Split Documents into Chunks
|
| 40 |
+
3. Load HuggingFace Embeddings (remember to use the URL we set above)
|
| 41 |
+
4. Index Files if they do not exist, otherwise load the vectorstore
|
| 42 |
+
"""
|
| 43 |
+
document_loader = TextLoader("./data/paul_graham_essays.txt")
|
| 44 |
+
documents = document_loader.load()
|
| 45 |
+
|
| 46 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
|
| 47 |
+
split_documents = text_splitter.split_documents(documents)
|
| 48 |
+
|
| 49 |
+
hf_embeddings = HuggingFaceEndpointEmbeddings(
|
| 50 |
+
model=HF_EMBED_ENDPOINT,
|
| 51 |
+
task="feature-extraction",
|
| 52 |
+
huggingfacehub_api_token=HF_TOKEN,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
async def add_documents_async(vectorstore, documents):
|
| 56 |
+
await vectorstore.aadd_documents(documents)
|
| 57 |
+
|
| 58 |
+
async def process_batch(vectorstore, batch, is_first_batch, pbar):
|
| 59 |
+
if is_first_batch:
|
| 60 |
+
result = await FAISS.afrom_documents(batch, hf_embeddings)
|
| 61 |
+
else:
|
| 62 |
+
await add_documents_async(vectorstore, batch)
|
| 63 |
+
result = vectorstore
|
| 64 |
+
pbar.update(len(batch))
|
| 65 |
+
return result
|
| 66 |
+
|
| 67 |
+
async def main():
|
| 68 |
+
print("Indexing Files")
|
| 69 |
+
|
| 70 |
+
vectorstore = None
|
| 71 |
+
batch_size = 32
|
| 72 |
+
|
| 73 |
+
batches = [split_documents[i:i+batch_size] for i in range(0, len(split_documents), batch_size)]
|
| 74 |
+
|
| 75 |
+
async def process_all_batches():
|
| 76 |
+
nonlocal vectorstore
|
| 77 |
+
tasks = []
|
| 78 |
+
pbars = []
|
| 79 |
+
|
| 80 |
+
for i, batch in enumerate(batches):
|
| 81 |
+
pbar = tqdm(total=len(batch), desc=f"Batch {i+1}/{len(batches)}", position=i)
|
| 82 |
+
pbars.append(pbar)
|
| 83 |
+
|
| 84 |
+
if i == 0:
|
| 85 |
+
vectorstore = await process_batch(None, batch, True, pbar)
|
| 86 |
+
else:
|
| 87 |
+
tasks.append(process_batch(vectorstore, batch, False, pbar))
|
| 88 |
+
|
| 89 |
+
if tasks:
|
| 90 |
+
await asyncio.gather(*tasks)
|
| 91 |
+
|
| 92 |
+
for pbar in pbars:
|
| 93 |
+
pbar.close()
|
| 94 |
+
|
| 95 |
+
await process_all_batches()
|
| 96 |
+
|
| 97 |
+
hf_retriever = vectorstore.as_retriever()
|
| 98 |
+
print("\nIndexing complete. Vectorstore is ready for use.")
|
| 99 |
+
return hf_retriever
|
| 100 |
+
|
| 101 |
+
async def run():
|
| 102 |
+
retriever = await main()
|
| 103 |
+
return retriever
|
| 104 |
+
|
| 105 |
+
hf_retriever = asyncio.run(run())
|
| 106 |
+
|
| 107 |
+
# -- AUGMENTED -- #
|
| 108 |
+
"""
|
| 109 |
+
1. Define a String Template
|
| 110 |
+
2. Create a Prompt Template from the String Template
|
| 111 |
+
"""
|
| 112 |
+
RAG_PROMPT_TEMPLATE = """\
|
| 113 |
+
<|start_header_id|>system<|end_header_id|>
|
| 114 |
+
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
|
| 115 |
+
|
| 116 |
+
<|start_header_id|>user<|end_header_id|>
|
| 117 |
+
User Query:
|
| 118 |
+
{query}
|
| 119 |
+
|
| 120 |
+
Context:
|
| 121 |
+
{context}<|eot_id|>
|
| 122 |
+
|
| 123 |
+
<|start_header_id|>assistant<|end_header_id|>
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
| 127 |
+
|
| 128 |
+
# -- GENERATION -- #
|
| 129 |
+
"""
|
| 130 |
+
1. Create a HuggingFaceEndpoint for the LLM
|
| 131 |
+
"""
|
| 132 |
+
hf_llm = HuggingFaceEndpoint(
|
| 133 |
+
endpoint_url=HF_LLM_ENDPOINT,
|
| 134 |
+
max_new_tokens=512,
|
| 135 |
+
top_k=10,
|
| 136 |
+
top_p=0.95,
|
| 137 |
+
temperature=0.3,
|
| 138 |
+
repetition_penalty=1.15,
|
| 139 |
+
huggingfacehub_api_token=HF_TOKEN,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
@cl.author_rename
|
| 143 |
+
def rename(original_author: str):
|
| 144 |
+
"""
|
| 145 |
+
This function can be used to rename the 'author' of a message.
|
| 146 |
+
|
| 147 |
+
In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
|
| 148 |
+
"""
|
| 149 |
+
rename_dict = {
|
| 150 |
+
"Assistant" : "Paul Graham Essay Bot"
|
| 151 |
+
}
|
| 152 |
+
return rename_dict.get(original_author, original_author)
|
| 153 |
+
|
| 154 |
+
@cl.on_chat_start
|
| 155 |
+
async def start_chat():
|
| 156 |
+
"""
|
| 157 |
+
This function will be called at the start of every user session.
|
| 158 |
+
|
| 159 |
+
We will build our LCEL RAG chain here, and store it in the user session.
|
| 160 |
+
|
| 161 |
+
The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
|
| 162 |
+
"""
|
| 163 |
+
|
| 164 |
+
lcel_rag_chain = (
|
| 165 |
+
{"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}
|
| 166 |
+
| rag_prompt | hf_llm
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
|
| 170 |
+
|
| 171 |
+
@cl.on_message
|
| 172 |
+
async def main(message: cl.Message):
|
| 173 |
+
"""
|
| 174 |
+
This function will be called every time a message is recieved from a session.
|
| 175 |
+
|
| 176 |
+
We will use the LCEL RAG chain to generate a response to the user query.
|
| 177 |
+
|
| 178 |
+
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
|
| 179 |
+
"""
|
| 180 |
+
lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
|
| 181 |
+
|
| 182 |
+
msg = cl.Message(content="")
|
| 183 |
+
|
| 184 |
+
for chunk in await cl.make_async(lcel_rag_chain.stream)(
|
| 185 |
+
{"query": message.content},
|
| 186 |
+
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
| 187 |
+
):
|
| 188 |
+
await msg.stream_token(chunk)
|
| 189 |
+
|
| 190 |
+
await msg.send()
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|