zhijianma's picture
Update app.py
d135ca6 verified
raw
history blame
17.2 kB
import base64
import copy
import inspect
import json
import os
import shutil
import gradio as gr
import yaml
from datasets import Dataset
from data_juicer.ops.base_op import OPERATORS
from data_juicer.utils.constant import Fields
from data_juicer.utils.mm_utils import SpecialTokens, remove_special_tokens
demo_path = os.path.dirname(os.path.abspath(__file__))
project_path = os.path.dirname(os.path.dirname(demo_path))
# 图片本地路径转换为 base64 格式
def covert_image_to_base64(image_path):
# 获得文件后缀名
ext = image_path.split(".")[-1]
if ext not in ["gif", "jpeg", "png"]:
ext = "jpeg"
with open(image_path, "rb") as image_file:
# Read the file
encoded_string = base64.b64encode(image_file.read())
# Convert bytes to string
base64_data = encoded_string.decode("utf-8")
# 生成base64编码的地址
base64_url = f"data:image/{ext};base64,{base64_data}"
return base64_url
def format_cover_html(project_img_path):
readme_link = 'https://github.com/alibaba/data-juicer'
config = {
'name': "Data-Juicer",
'label': "Op Insight",
'description': f'A One-Stop Data Processing System for Large Language Models.',
'introduction':
"This project is being actively updated and maintained, and we will periodically enhance and add more features and data recipes. <br>"
"We welcome you to join us in promoting LLM data development and research!<br>",
'demo':"You can experience the effect of the operators of Data-Juicer",
'note':'Note: Due to resource limitations, only a subset of operators is available here. see more details in <a href="{readme_link}">GitHub</a>'
}
# image_src = covert_image_to_base64(project_img_path)
# <div class="project_img"> <img src={image_src} /> </div>
# <div class='project_cover'>
return f"""
<div>
<div class="project_name">{config.get("name", "")} </div>
<div class="project_desc">{config.get("description", "")}</div>
<div class="project_desc">{config.get("introduction", "")}</div>
<div class="project_desc">{config.get("demo", "")}</div>
<div class="project_desc">{config.get("note", "")}</div>
</div>
"""
op_text = ''
docs_file = os.path.join(project_path, 'docs/Operators.md')
if os.path.exists(docs_file):
with open(os.path.join(project_path, 'docs/Operators.md'), 'r') as f:
op_text = f.read()
def extract_op_desc(markdown_text, header):
start_index = markdown_text.find(header)
end_index = markdown_text.find("\n##", start_index + len(header))
return markdown_text[start_index+ len(header):end_index].strip()
op_desc = f"<div style='text-align: center;'>{extract_op_desc(op_text, '## Overview').split('All the specific ')[0].strip()}</div>"
op_list_desc = {
'mapper':extract_op_desc(op_text, '## Mapper <a name="mapper"/>'),
'filter':extract_op_desc(op_text, '## Filter <a name="filter"/>'),
'deduplicator':extract_op_desc(op_text, '## Deduplicator <a name="deduplicator"/>'),
'selector':extract_op_desc(op_text, '## Selector <a name="selector"/>'),
}
op_types = ['mapper', 'filter', 'deduplicator']
local_ops_dict = {op_type:[] for op_type in op_types}
multimodal = os.getenv('MULTI_MODAL', True)
multimodal_visible = False
cache_dir = './cache'
text_key = 'text'
image_key = 'images'
audio_key = 'audios'
video_key = 'videos'
def get_op_lists(op_type):
use_local_op = os.getenv('USE_LOCAL_OP', False)
if not use_local_op:
all_ops = list(OPERATORS.modules.keys())
options = [
name for name in all_ops if name.endswith(op_type)
]
else:
options = local_ops_dict.get(op_type, [])
for exclude in ['image', 'video', 'audio']:
options = [name for name in options if multimodal or exclude not in name]
return options
def show_code(op_name):
op_class = OPERATORS.modules[op_name]
text = inspect.getsourcelines(op_class)
init_signature = inspect.signature(op_class.__init__)
# 输出每个参数的名字和默认值
default_params = dict()
for name, parameter in init_signature.parameters.items():
if name in ['self', 'args', 'kwargs']:
continue # 跳过 'self' 参数
if parameter.default is not inspect.Parameter.empty:
default_params[name] = parameter.default
return ''.join(text[0]), yaml.dump(default_params)
def change_visible(op_name, show_text):
text_visible = show_text
video_visible = False
audio_visible = False
image_visible = False
if 'video' in op_name:
video_visible = True
elif 'audio' in op_name:
audio_visible = True
elif 'image' in op_name:
image_visible = True
elif 'document' in op_name:
text_visible = True
return gr.update(visible=text_visible), gr.update(visible=image_visible), gr.update(visible=video_visible), gr.update(visible=audio_visible), gr.update(visible=text_visible), gr.update(visible=image_visible), gr.update(visible=video_visible), gr.update(visible=audio_visible)
def clear_directory(directory=cache_dir):
for item in os.listdir(directory):
if item == '.gitkeep':
continue
item_path = os.path.join(directory, item)
if os.path.isfile(item_path) or os.path.islink(item_path):
os.remove(item_path) # 删除文件或链接
elif os.path.isdir(item_path):
shutil.rmtree(item_path) # 递归删除目录
def copy_func(file):
cache_file = None
if file:
filename= os.path.basename(file)
cache_file = os.path.join(cache_dir, filename)
shutil.copyfile(file, cache_file)
return cache_file
def encode_sample(input_text, input_image, input_video, input_audio, is_batched_op=False):
sample = dict()
sample[image_key]= [input_image] if input_image else []
sample[video_key]=[input_video] if input_video else []
sample[audio_key]=[input_audio] if input_audio else []
if input_image:
input_text += SpecialTokens.image
if input_video:
input_text += SpecialTokens.video
if input_audio:
input_text += SpecialTokens.audio
sample[text_key]=input_text
if is_batched_op:
for k, v in sample.items():
sample[k] = [v]
return sample
def decode_sample(output_sample, is_batched_op=False):
if is_batched_op:
for k, v in output_sample.items():
output_sample[k] = v[-1]
output_text = remove_special_tokens(output_sample[text_key])
output_image = output_sample[image_key][0] if output_sample[image_key] else None
output_video = output_sample[video_key][0] if output_sample[video_key] else None
output_audio = output_sample[audio_key][0] if output_sample[audio_key] else None
image_file = copy_func(output_image)
video_file = copy_func(output_video)
audio_file = copy_func(output_audio)
return output_text, image_file, video_file, audio_file
def create_tab_layout(op_tab, op_type, run_op, has_stats=False):
with op_tab:
options = get_op_lists(op_type)
label = f'Select a {op_type} to show details'
with gr.Row():
op_selector = gr.Dropdown(value=options[0], label=label, choices=options, interactive=True)
with gr.Column():
gr.Markdown(" **Op Parameters**")
op_params = gr.Code(label="Yaml",language='yaml', interactive=True)
run_button = gr.Button(value="🚀Run")
show_code_button = gr.Button(value="🔍Show Code")
show_text = gr.Checkbox(value=True,visible=False)
with gr.Column():
with gr.Group('Inputs'):
gr.Markdown(" **Inputs**")
with gr.Row():
input_text = gr.TextArea(label="Text",interactive=True,scale=2)
input_image = gr.Image(label='Image', type='filepath', visible=multimodal_visible)
input_video = gr.Video(label='Video', visible=multimodal_visible)
input_audio = gr.Audio(label='Audio', type='filepath', visible=multimodal_visible)
with gr.Group('Outputs'):
gr.Markdown(" **Outputs**")
with gr.Row():
output_text = gr.TextArea(label="Text",interactive=False,scale=2)
output_image = gr.Image(label='Image', type='filepath', visible=multimodal_visible)
output_video = gr.Video(label='Video', visible=multimodal_visible,)
output_audio = gr.Audio(label='Audio', type='filepath', visible=multimodal_visible)
with gr.Row():
if has_stats:
output_stats = gr.Json(label='Stats')
output_keep = gr.Text(label='Keep or not?', interactive=False)
code = gr.Code(label='Source', language='python')
inputs = [input_text, input_image, input_video, input_audio, op_selector, op_params]
outputs = [output_text, output_image, output_video, output_audio]
if has_stats:
outputs.append(output_stats)
outputs.append(output_keep)
def run_func(*args):
try:
try:
args = list(args)
op_params = args.pop()
params = yaml.safe_load(op_params)
except:
params = {}
if params is None:
params = {}
return run_op(*args, params)
except Exception as e:
gr.Error(str(e))
print(e)
return outputs
show_code_button.click(show_code, inputs=[op_selector], outputs=[code, op_params])
show_code_button.click(change_visible, inputs=[op_selector,show_text], outputs=outputs[:4] + inputs[:4])
run_button.click(run_func, inputs=inputs, outputs=outputs)
run_button.click(change_visible, inputs=[op_selector,show_text], outputs=outputs[:4] + inputs[:4])
op_selector.select(show_code, inputs=[op_selector], outputs=[code, op_params])
op_selector.select(change_visible, inputs=[op_selector,show_text], outputs=outputs[:4] + inputs[:4])
op_tab.select(change_visible, inputs=[op_selector,show_text], outputs=outputs[:4] + inputs[:4])
op_tab.select(show_code, inputs=[op_selector], outputs=[code, op_params])
def create_mapper_tab(op_type, op_tab):
with op_tab:
def run_op(input_text, input_image, input_video, input_audio, op_name, op_params):
op_class = OPERATORS.modules[op_name]
op = op_class(**op_params)
is_batched_op = op.is_batched_op()
sample = encode_sample(input_text, input_image, input_video, input_audio, is_batched_op)
output_sample = op.process(copy.deepcopy(sample))
return decode_sample(output_sample, is_batched_op)
create_tab_layout(op_tab, op_type, run_op)
def create_filter_tab(op_type, op_tab):
def run_op(input_text, input_image, input_video, input_audio, op_name, op_params):
op_class = OPERATORS.modules[op_name]
op = op_class(**op_params)
sample = encode_sample(input_text, input_image, input_video, input_audio)
sample[Fields.stats] = dict()
output_sample = op.compute_stats(copy.deepcopy(sample))
if op.process(output_sample):
output_keep = 'Yes'
else:
output_keep = 'No'
output_stats = output_sample[Fields.stats]
return *decode_sample(output_sample), output_stats, output_keep
create_tab_layout(op_tab, op_type, run_op, has_stats=True)
def create_deduplicator_tab(op_type, op_tab):
with op_tab:
def run_op(input_text, input_image, input_video, input_audio, input_text2, input_image2, input_video2, input_audio2, op_name, op_params):
op_class = OPERATORS.modules[op_name]
op = op_class(**op_params)
sample = encode_sample(input_text, input_image, input_video, input_audio)
sample2 = encode_sample(input_text2, input_image2, input_video2, input_audio2)
output_sample = op.compute_hash(copy.deepcopy(sample))
output_sample2 = op.compute_hash(copy.deepcopy(sample2))
ds = Dataset.from_list([output_sample, output_sample2])
hash_values = ds.remove_columns([text_key, image_key, video_key, audio_key]).to_dict()
ds.cleanup_cache_files()
for key, values in hash_values.items():
new_values = []
for value in values:
if isinstance(value, list):
new_values.append([v.hex() for v in value])
hash_values[key] = new_values or values
_, dedup_pairs = op.process(ds, show_num=1)
if dedup_pairs:
dedup = "Yes"
else:
dedup = "No"
return json.dumps(hash_values), dedup
create_tab_double_layout(op_tab, op_type, run_op)
def create_tab_double_layout(op_tab, op_type, run_op):
with op_tab:
options = get_op_lists(op_type)
label = f'Select a {op_type} to show details'
with gr.Row():
op_selector = gr.Dropdown(value=options[0], label=label, choices=options, interactive=True)
with gr.Column():
gr.Markdown(" **Op Parameters**")
op_params = gr.Code(label="Yaml",language='yaml', interactive=True)
run_button = gr.Button(value="🚀Run")
show_code_button = gr.Button(value="🔍Show Code")
show_text = gr.Checkbox(value=False,visible=False)
with gr.Column():
with gr.Group('Inputs'):
gr.Markdown(" **Inputs**")
with gr.Row():
input_text = gr.TextArea(label="Text",interactive=True,)
input_text2 = gr.TextArea(label="Text",interactive=True,)
input_image = gr.Image(label='Image', type='filepath', visible=multimodal_visible)
input_image2 = gr.Image(label='Image', type='filepath', visible=multimodal_visible)
input_video = gr.Video(label='Video', visible=multimodal_visible)
input_video2 = gr.Video(label='Video', visible=multimodal_visible)
input_audio = gr.Audio(label='Audio', type='filepath', visible=multimodal_visible)
input_audio2 = gr.Audio(label='Audio', type='filepath', visible=multimodal_visible)
with gr.Group('Outputs'):
gr.Markdown(" **Outputs**")
with gr.Row():
output_deduplicated_pairs = gr.Json(label='Deduplicated pairs')
output_deduplicated = gr.Text(label='Deduplicate or not?', interactive=False)
code = gr.Code(label='Source', language='python')
inputs = [input_text, input_image, input_video, input_audio, input_text2, input_image2, input_video2, input_audio2, op_selector, op_params]
outputs = [output_deduplicated_pairs, output_deduplicated]
def run_func(*args):
try:
try:
args = list(args)
op_params = args.pop()
params = yaml.safe_load(op_params)
except:
params = {}
if params is None:
params = {}
return run_op(*args, params)
except Exception as e:
gr.Error(str(e))
print(e)
return outputs
show_code_button.click(show_code, inputs=[op_selector], outputs=[code, op_params])
show_code_button.click(change_visible, inputs=[op_selector, show_text], outputs=inputs[:8])
run_button.click(run_func, inputs=inputs, outputs=outputs)
run_button.click(change_visible, inputs=[op_selector,show_text], outputs=inputs[:8])
op_selector.select(show_code, inputs=[op_selector], outputs=[code, op_params])
op_selector.select(change_visible, inputs=[op_selector,show_text], outputs=inputs[:8])
op_tab.select(change_visible, inputs=[op_selector,show_text], outputs= inputs[:8])
op_tab.select(show_code, inputs=[op_selector], outputs=[code, op_params])
with gr.Blocks(css="./app.css") as demo:
dj_image = os.path.join(project_path, 'docs/imgs/data-juicer.jpg')
gr.HTML(format_cover_html(dj_image))
with gr.Accordion(label='Op Insight',open=True):
tabs = gr.Tabs()
with tabs:
op_tabs = {op_type: gr.Tab(label=op_type.capitalize() + 's') for op_type in op_types}
for op_type, op_tab in op_tabs.items():
create_op_tab_func = globals().get(f'create_{op_type}_tab', None)
if callable(create_op_tab_func):
create_op_tab_func(op_type, op_tab)
else:
gr.Error(f'{op_type} not callable')
demo.load(clear_directory, every=10)
demo.launch()