Spaces:
Running
Running
File size: 6,091 Bytes
df4f8a7 f06b870 df4f8a7 1ef2f3c df4f8a7 49b7576 1ef2f3c 49b7576 df4f8a7 49b7576 df4f8a7 49b7576 df4f8a7 9a6bcbb 49b7576 df4f8a7 1ef2f3c df4f8a7 1ef2f3c df4f8a7 1ef2f3c df4f8a7 3487cdb df4f8a7 3487cdb df4f8a7 1ef2f3c df4f8a7 469e2c5 df4f8a7 469e2c5 df4f8a7 1ef2f3c df4f8a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import time
import uuid
from datetime import datetime
import gradio as gr
import soundfile as sf
from model import get_pretrained_model, language_to_models
def MyPrint(s):
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
print(f"{date_time}: {s}")
title = "# Multilingual Text-to-speech (TTS)"
# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
examples = [
[
"English",
"csukuangfj/vits-piper-en_US-ryan-medium|1 speaker",
"Welcome to the next-generation Kaldi Text-to-Speech demo, running entirely on CPU.",
0,
1.0,
],
[
"English",
"csukuangfj/vits-piper-en_GB-southern_english_male-medium|8 speakers",
"Machine learning and artificial intelligence are revolutionizing the tech industry.",
0,
1.0,
],
[
"English",
"csukuangfj/vits-coqui-en-vctk|109 speakers",
"The quick brown fox jumps over the lazy dog. It's a common pangram in English.",
0,
1.0,
],
[
"English",
"csukuangfj/vits-piper-en_US-amy-medium|1 speaker",
"On July 4th, 2025, we will celebrate with fireworks and music across the nation.",
0,
1.0,
],
[
"English",
"csukuangfj/vits-piper-en_GB-alan-medium|1 speaker",
"Please call 911 for emergencies. Your appointment is confirmed for September 1st.",
0,
1.0,
],
]
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown(
choices=choices,
value=choices[0],
interactive=True,
)
raise ValueError(f"Unsupported language: {language}")
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def process(language: str, repo_id: str, text: str, sid: str, speed: float):
MyPrint(f"Input text: {text}. sid: {sid}, speed: {speed}")
sid = int(sid)
tts = get_pretrained_model(repo_id, speed)
start = time.time()
audio = tts.generate(text, sid=sid)
end = time.time()
if len(audio.samples) == 0:
raise ValueError(
"Error in generating audios. Please read previous error messages."
)
duration = len(audio.samples) / audio.sample_rate
elapsed_seconds = end - start
rtf = elapsed_seconds / duration
info = f"""
Wave duration : {duration:.3f} s <br/>
Processing time: {elapsed_seconds:.3f} s <br/>
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/>
"""
MyPrint(info)
MyPrint(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}")
filename = str(uuid.uuid4())
filename = f"{filename}.wav"
sf.write(
filename,
audio.samples,
samplerate=audio.sample_rate,
subtype="PCM_16",
)
return filename, build_html_output(info)
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(
label="Language",
choices=language_choices,
value=language_choices[0],
)
model_dropdown = gr.Dropdown(
choices=language_to_models[language_choices[0]],
label="Select a model",
value=language_to_models[language_choices[0]][2],
)
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
with gr.Tabs():
with gr.TabItem("Please input your text"):
input_text = gr.Textbox(
label="Input text",
info="Your text",
lines=3,
placeholder="Please input your text here",
)
input_sid = gr.Textbox(
label="Speaker ID",
info="Speaker ID",
lines=1,
max_lines=1,
value="0",
placeholder="Speaker ID. Valid only for mult-speaker model",
)
input_speed = gr.Slider(
minimum=0.1,
maximum=10,
value=1,
step=0.1,
label="Speed (larger->faster; smaller->slower)",
)
input_button = gr.Button("Submit")
output_audio = gr.Audio(label="Output")
output_info = gr.HTML(label="Info")
gr.Examples(
examples=examples,
inputs=[
language_radio,
model_dropdown,
input_text,
input_sid,
input_speed,
],
outputs=None, # Do not auto-run on selection
label="Click on an example to load it into the input fields. Then press Submit."
)
input_button.click(
process,
inputs=[
language_radio,
model_dropdown,
input_text,
input_sid,
input_speed,
],
outputs=[
output_audio,
output_info,
],
)
def download_espeak_ng_data():
os.system(
"""
cd /tmp
wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2
tar xf espeak-ng-data.tar.bz2
"""
)
if __name__ == "__main__":
download_espeak_ng_data()
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
demo.launch()
|