Spaces:
Running
Running
| from functools import lru_cache | |
| from typing import List, Tuple | |
| from huggingface_hub import hf_hub_download | |
| from imgutils.data import ImageTyping, load_image, rgb_encode | |
| from onnx_ import _open_onnx_model | |
| from plot import detection_visualize | |
| from yolo_ import _image_preprocess, _data_postprocess | |
| _FACE_MODELS = [ | |
| 'face_detect_v1.4_s', | |
| 'face_detect_v1.4_n', | |
| 'face_detect_v1.3_s', | |
| 'face_detect_v1.3_n', | |
| 'face_detect_v1.2_s', | |
| 'face_detect_v1.1_s', | |
| 'face_detect_v1.1_n', | |
| 'face_detect_v1_s', | |
| 'face_detect_v1_n', | |
| 'face_detect_v0_s', | |
| 'face_detect_v0_n', | |
| ] | |
| _DEFAULT_FACE_MODEL = _FACE_MODELS[0] | |
| def _open_face_detect_model(model_name): | |
| return _open_onnx_model(hf_hub_download( | |
| f'deepghs/anime_face_detection', | |
| f'{model_name}/model.onnx', | |
| )) | |
| _LABELS = ['face'] | |
| def detect_faces(image: ImageTyping, model_name: str, max_infer_size=640, | |
| conf_threshold: float = 0.25, iou_threshold: float = 0.7) \ | |
| -> List[Tuple[Tuple[int, int, int, int], str, float]]: | |
| image = load_image(image, mode='RGB') | |
| new_image, old_size, new_size = _image_preprocess(image, max_infer_size) | |
| data = rgb_encode(new_image)[None, ...] | |
| output, = _open_face_detect_model(model_name).run(['output0'], {'images': data}) | |
| return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS) | |
| def _gr_detect_faces(image: ImageTyping, model_name: str, max_infer_size=640, | |
| conf_threshold: float = 0.25, iou_threshold: float = 0.7): | |
| ret = detect_faces(image, model_name, max_infer_size, conf_threshold, iou_threshold) | |
| return detection_visualize(image, ret, _LABELS) | |