Spaces:
Runtime error
Runtime error
Commit
·
e32cea3
1
Parent(s):
150fd2f
first commit
Browse files- app.py +62 -0
- requirements.txt +14 -0
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 3 |
+
from langchain.document_loaders import PyPDFLoader
|
| 4 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
import torch
|
| 7 |
+
import base64
|
| 8 |
+
import time
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
# Load Hugging Face banner image
|
| 12 |
+
banner_image = Image.open("https://huggingface.co/spaces/wiwaaw/summary/resolve/main/banner.png")
|
| 13 |
+
st.image(banner_image, caption="Hugging Face LaMDA Mini Summary")
|
| 14 |
+
|
| 15 |
+
# Model and tokenizer
|
| 16 |
+
model_checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
|
| 17 |
+
model_tokenizer = T5Tokenizer.from_pretrained(model_checkpoint)
|
| 18 |
+
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
| 19 |
+
|
| 20 |
+
# File loader and preprocessing
|
| 21 |
+
def preprocess_pdf(file):
|
| 22 |
+
loader = PyPDFLoader(file)
|
| 23 |
+
pages = loader.load_and_split()
|
| 24 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=170, chunk_overlap=70)
|
| 25 |
+
texts = text_splitter.split_documents(pages)
|
| 26 |
+
final_text = ""
|
| 27 |
+
for text in texts:
|
| 28 |
+
final_text = final_text + text.page_content
|
| 29 |
+
return final_text
|
| 30 |
+
|
| 31 |
+
@st.cache_data
|
| 32 |
+
def language_model_pipeline(filepath):
|
| 33 |
+
summarization_pipeline = pipeline(
|
| 34 |
+
'summarization',
|
| 35 |
+
model=model,
|
| 36 |
+
tokenizer=model_tokenizer,
|
| 37 |
+
max_length=500,
|
| 38 |
+
min_length=32
|
| 39 |
+
)
|
| 40 |
+
input_text = preprocess_pdf(filepath)
|
| 41 |
+
summary_result = summarization_pipeline(input_text)
|
| 42 |
+
summarized_text = summary_result[0]['summary_text']
|
| 43 |
+
return summarized_text
|
| 44 |
+
|
| 45 |
+
# User interface
|
| 46 |
+
title = st.title("PDF Summarization using LaMini")
|
| 47 |
+
uploaded_file = st.file_uploader('Upload your PDF file', type=['pdf'])
|
| 48 |
+
|
| 49 |
+
if uploaded_file is not None:
|
| 50 |
+
st.success("File uploaded")
|
| 51 |
+
|
| 52 |
+
if st.button("Summarize"):
|
| 53 |
+
with st.spinner("Summarizing..."):
|
| 54 |
+
time.sleep(10)
|
| 55 |
+
|
| 56 |
+
filepath = uploaded_file.name
|
| 57 |
+
with open(filepath, "wb") as temp_file:
|
| 58 |
+
temp_file.write(uploaded_file.read())
|
| 59 |
+
|
| 60 |
+
summarized_result = language_model_pipeline(filepath)
|
| 61 |
+
st.success("Summary:")
|
| 62 |
+
st.write(summarized_result)
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
sentence_transformers
|
| 3 |
+
torch
|
| 4 |
+
sentencepiece
|
| 5 |
+
transformers
|
| 6 |
+
accelerate
|
| 7 |
+
chromadb
|
| 8 |
+
pypdf
|
| 9 |
+
tiktoken
|
| 10 |
+
streamlit
|
| 11 |
+
fastapi
|
| 12 |
+
uvicorn
|
| 13 |
+
python-multipart
|
| 14 |
+
aiofiles
|