Spaces:
Sleeping
Sleeping
Upload model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
| 7 |
+
from sklearn.utils.class_weight import compute_class_weight
|
| 8 |
+
import seaborn as sns
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.optim as optim
|
| 12 |
+
from torch.utils.data import Dataset, DataLoader
|
| 13 |
+
from torchvision import transforms, models
|
| 14 |
+
from PIL import Image
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
+
import warnings
|
| 17 |
+
warnings.filterwarnings('ignore')
|
| 18 |
+
|
| 19 |
+
# Set random seeds for reproducibility
|
| 20 |
+
torch.manual_seed(42)
|
| 21 |
+
np.random.seed(42)
|
| 22 |
+
|
| 23 |
+
# Configuration
|
| 24 |
+
CONFIG = {
|
| 25 |
+
'img_size': 224,
|
| 26 |
+
'batch_size': 16, # Reduced batch size
|
| 27 |
+
'num_epochs': 30,
|
| 28 |
+
'learning_rate': 0.0001,
|
| 29 |
+
'patience': 7,
|
| 30 |
+
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
|
| 31 |
+
'num_workers': 0, # Set to 0 to avoid multiprocessing issues
|
| 32 |
+
'model_save_path': 'best_trash_classifier.pth',
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
print(f"Using device: {CONFIG['device']}")
|
| 36 |
+
|
| 37 |
+
# Memory-Efficient Dataset Class
|
| 38 |
+
class TrashDatasetLazy(Dataset):
|
| 39 |
+
def __init__(self, dataset, indices, transform=None):
|
| 40 |
+
self.dataset = dataset
|
| 41 |
+
self.indices = indices
|
| 42 |
+
self.transform = transform
|
| 43 |
+
|
| 44 |
+
def __len__(self):
|
| 45 |
+
return len(self.indices)
|
| 46 |
+
|
| 47 |
+
def __getitem__(self, idx):
|
| 48 |
+
actual_idx = self.indices[idx]
|
| 49 |
+
item = self.dataset[actual_idx]
|
| 50 |
+
|
| 51 |
+
image = item['image']
|
| 52 |
+
label = item['label']
|
| 53 |
+
|
| 54 |
+
# Convert to PIL Image if needed
|
| 55 |
+
if not isinstance(image, Image.Image):
|
| 56 |
+
image = Image.fromarray(np.array(image))
|
| 57 |
+
|
| 58 |
+
# Convert to RGB if grayscale
|
| 59 |
+
if image.mode != 'RGB':
|
| 60 |
+
image = image.convert('RGB')
|
| 61 |
+
|
| 62 |
+
if self.transform:
|
| 63 |
+
image = self.transform(image)
|
| 64 |
+
|
| 65 |
+
return image, label
|
| 66 |
+
|
| 67 |
+
# Data Augmentation and Normalization
|
| 68 |
+
train_transform = transforms.Compose([
|
| 69 |
+
transforms.Resize((CONFIG['img_size'], CONFIG['img_size'])),
|
| 70 |
+
transforms.RandomHorizontalFlip(p=0.5),
|
| 71 |
+
transforms.RandomRotation(15),
|
| 72 |
+
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
|
| 73 |
+
transforms.RandomAffine(degrees=0, translate=(0.1, 0.1)),
|
| 74 |
+
transforms.ToTensor(),
|
| 75 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 76 |
+
])
|
| 77 |
+
|
| 78 |
+
val_transform = transforms.Compose([
|
| 79 |
+
transforms.Resize((CONFIG['img_size'], CONFIG['img_size'])),
|
| 80 |
+
transforms.ToTensor(),
|
| 81 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 82 |
+
])
|
| 83 |
+
|
| 84 |
+
# Load Dataset (streaming mode)
|
| 85 |
+
print("\n" + "="*60)
|
| 86 |
+
print("LOADING DATASET")
|
| 87 |
+
print("="*60)
|
| 88 |
+
|
| 89 |
+
ds = load_dataset("rootstrap-org/waste-classifier", split="train")
|
| 90 |
+
print(f"Dataset loaded successfully!")
|
| 91 |
+
print(f"Total samples: {len(ds)}")
|
| 92 |
+
|
| 93 |
+
# Get class names
|
| 94 |
+
class_names = ds.features['label'].names
|
| 95 |
+
num_classes = len(class_names)
|
| 96 |
+
print(f"\nNumber of classes: {num_classes}")
|
| 97 |
+
print(f"Classes: {class_names}")
|
| 98 |
+
|
| 99 |
+
# Extract only labels for splitting (not images!)
|
| 100 |
+
labels = [item['label'] for item in ds]
|
| 101 |
+
|
| 102 |
+
# Check class distribution
|
| 103 |
+
unique, counts = np.unique(labels, return_counts=True)
|
| 104 |
+
print("\nClass Distribution:")
|
| 105 |
+
for cls_idx, count in zip(unique, counts):
|
| 106 |
+
print(f" {class_names[cls_idx]}: {count} samples ({count/len(labels)*100:.2f}%)")
|
| 107 |
+
|
| 108 |
+
# Split dataset: 70% train, 15% val, 15% test
|
| 109 |
+
print("\n" + "="*60)
|
| 110 |
+
print("SPLITTING DATASET")
|
| 111 |
+
print("="*60)
|
| 112 |
+
|
| 113 |
+
indices = np.arange(len(ds))
|
| 114 |
+
train_idx, temp_idx, y_train, y_temp = train_test_split(
|
| 115 |
+
indices, labels, test_size=0.3, random_state=42, stratify=labels
|
| 116 |
+
)
|
| 117 |
+
val_idx, test_idx, y_val, y_test = train_test_split(
|
| 118 |
+
temp_idx, y_temp, test_size=0.5, random_state=42, stratify=y_temp
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
print(f"Train set: {len(train_idx)} samples")
|
| 122 |
+
print(f"Validation set: {len(val_idx)} samples")
|
| 123 |
+
print(f"Test set: {len(test_idx)} samples")
|
| 124 |
+
|
| 125 |
+
# Calculate class weights for handling imbalance
|
| 126 |
+
class_weights = compute_class_weight(
|
| 127 |
+
class_weight='balanced',
|
| 128 |
+
classes=np.unique(y_train),
|
| 129 |
+
y=y_train
|
| 130 |
+
)
|
| 131 |
+
class_weights = torch.FloatTensor(class_weights).to(CONFIG['device'])
|
| 132 |
+
print(f"\nClass weights (for imbalance): {class_weights.cpu().numpy()}")
|
| 133 |
+
|
| 134 |
+
# Create datasets and dataloaders
|
| 135 |
+
train_dataset = TrashDatasetLazy(ds, train_idx, transform=train_transform)
|
| 136 |
+
val_dataset = TrashDatasetLazy(ds, val_idx, transform=val_transform)
|
| 137 |
+
test_dataset = TrashDatasetLazy(ds, test_idx, transform=val_transform)
|
| 138 |
+
|
| 139 |
+
train_loader = DataLoader(
|
| 140 |
+
train_dataset, batch_size=CONFIG['batch_size'],
|
| 141 |
+
shuffle=True, num_workers=CONFIG['num_workers'], pin_memory=True
|
| 142 |
+
)
|
| 143 |
+
val_loader = DataLoader(
|
| 144 |
+
val_dataset, batch_size=CONFIG['batch_size'],
|
| 145 |
+
shuffle=False, num_workers=CONFIG['num_workers'], pin_memory=True
|
| 146 |
+
)
|
| 147 |
+
test_loader = DataLoader(
|
| 148 |
+
test_dataset, batch_size=CONFIG['batch_size'],
|
| 149 |
+
shuffle=False, num_workers=CONFIG['num_workers'], pin_memory=True
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# Build Model using EfficientNetV2 (pretrained)
|
| 153 |
+
print("\n" + "="*60)
|
| 154 |
+
print("BUILDING MODEL")
|
| 155 |
+
print("="*60)
|
| 156 |
+
|
| 157 |
+
model = models.efficientnet_v2_s(weights='IMAGENET1K_V1')
|
| 158 |
+
|
| 159 |
+
# Freeze early layers
|
| 160 |
+
for param in list(model.parameters())[:-20]:
|
| 161 |
+
param.requires_grad = False
|
| 162 |
+
|
| 163 |
+
# Modify classifier for our number of classes
|
| 164 |
+
num_features = model.classifier[1].in_features
|
| 165 |
+
model.classifier = nn.Sequential(
|
| 166 |
+
nn.Dropout(p=0.3, inplace=True),
|
| 167 |
+
nn.Linear(num_features, 512),
|
| 168 |
+
nn.ReLU(),
|
| 169 |
+
nn.Dropout(p=0.3),
|
| 170 |
+
nn.Linear(512, num_classes)
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
model = model.to(CONFIG['device'])
|
| 174 |
+
print(f"Model: EfficientNetV2-S (pretrained)")
|
| 175 |
+
print(f"Total parameters: {sum(p.numel() for p in model.parameters()):,}")
|
| 176 |
+
print(f"Trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
|
| 177 |
+
|
| 178 |
+
# Loss function with class weights and optimizer
|
| 179 |
+
criterion = nn.CrossEntropyLoss(weight=class_weights)
|
| 180 |
+
optimizer = optim.AdamW(model.parameters(), lr=CONFIG['learning_rate'], weight_decay=0.01)
|
| 181 |
+
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
|
| 182 |
+
optimizer, mode='min', factor=0.5, patience=3, verbose=True
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
# Training and Validation Functions
|
| 186 |
+
def train_epoch(model, loader, criterion, optimizer, device):
|
| 187 |
+
model.train()
|
| 188 |
+
running_loss = 0.0
|
| 189 |
+
correct = 0
|
| 190 |
+
total = 0
|
| 191 |
+
|
| 192 |
+
pbar = tqdm(loader, desc='Training')
|
| 193 |
+
for images, labels in pbar:
|
| 194 |
+
images, labels = images.to(device), labels.to(device)
|
| 195 |
+
|
| 196 |
+
optimizer.zero_grad()
|
| 197 |
+
outputs = model(images)
|
| 198 |
+
loss = criterion(outputs, labels)
|
| 199 |
+
loss.backward()
|
| 200 |
+
optimizer.step()
|
| 201 |
+
|
| 202 |
+
running_loss += loss.item() * images.size(0)
|
| 203 |
+
_, predicted = outputs.max(1)
|
| 204 |
+
total += labels.size(0)
|
| 205 |
+
correct += predicted.eq(labels).sum().item()
|
| 206 |
+
|
| 207 |
+
pbar.set_postfix({'loss': f'{loss.item():.4f}', 'acc': f'{100.*correct/total:.2f}%'})
|
| 208 |
+
|
| 209 |
+
epoch_loss = running_loss / total
|
| 210 |
+
epoch_acc = 100. * correct / total
|
| 211 |
+
return epoch_loss, epoch_acc
|
| 212 |
+
|
| 213 |
+
def validate_epoch(model, loader, criterion, device):
|
| 214 |
+
model.eval()
|
| 215 |
+
running_loss = 0.0
|
| 216 |
+
correct = 0
|
| 217 |
+
total = 0
|
| 218 |
+
|
| 219 |
+
with torch.no_grad():
|
| 220 |
+
pbar = tqdm(loader, desc='Validation')
|
| 221 |
+
for images, labels in pbar:
|
| 222 |
+
images, labels = images.to(device), labels.to(device)
|
| 223 |
+
|
| 224 |
+
outputs = model(images)
|
| 225 |
+
loss = criterion(outputs, labels)
|
| 226 |
+
|
| 227 |
+
running_loss += loss.item() * images.size(0)
|
| 228 |
+
_, predicted = outputs.max(1)
|
| 229 |
+
total += labels.size(0)
|
| 230 |
+
correct += predicted.eq(labels).sum().item()
|
| 231 |
+
|
| 232 |
+
pbar.set_postfix({'loss': f'{loss.item():.4f}', 'acc': f'{100.*correct/total:.2f}%'})
|
| 233 |
+
|
| 234 |
+
epoch_loss = running_loss / total
|
| 235 |
+
epoch_acc = 100. * correct / total
|
| 236 |
+
return epoch_loss, epoch_acc
|
| 237 |
+
|
| 238 |
+
# Training Loop
|
| 239 |
+
print("\n" + "="*60)
|
| 240 |
+
print("TRAINING MODEL")
|
| 241 |
+
print("="*60)
|
| 242 |
+
|
| 243 |
+
history = {
|
| 244 |
+
'train_loss': [], 'train_acc': [],
|
| 245 |
+
'val_loss': [], 'val_acc': []
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
best_val_acc = 0.0
|
| 249 |
+
patience_counter = 0
|
| 250 |
+
|
| 251 |
+
for epoch in range(CONFIG['num_epochs']):
|
| 252 |
+
print(f"\nEpoch {epoch+1}/{CONFIG['num_epochs']}")
|
| 253 |
+
print("-" * 60)
|
| 254 |
+
|
| 255 |
+
train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer, CONFIG['device'])
|
| 256 |
+
val_loss, val_acc = validate_epoch(model, val_loader, criterion, CONFIG['device'])
|
| 257 |
+
|
| 258 |
+
history['train_loss'].append(train_loss)
|
| 259 |
+
history['train_acc'].append(train_acc)
|
| 260 |
+
history['val_loss'].append(val_loss)
|
| 261 |
+
history['val_acc'].append(val_acc)
|
| 262 |
+
|
| 263 |
+
print(f"\nTrain Loss: {train_loss:.4f} | Train Acc: {train_acc:.2f}%")
|
| 264 |
+
print(f"Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.2f}%")
|
| 265 |
+
|
| 266 |
+
scheduler.step(val_loss)
|
| 267 |
+
|
| 268 |
+
# Save best model
|
| 269 |
+
if val_acc > best_val_acc:
|
| 270 |
+
best_val_acc = val_acc
|
| 271 |
+
torch.save({
|
| 272 |
+
'epoch': epoch,
|
| 273 |
+
'model_state_dict': model.state_dict(),
|
| 274 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 275 |
+
'val_acc': val_acc,
|
| 276 |
+
'class_names': class_names
|
| 277 |
+
}, CONFIG['model_save_path'])
|
| 278 |
+
print(f"✓ Model saved! (Val Acc: {val_acc:.2f}%)")
|
| 279 |
+
patience_counter = 0
|
| 280 |
+
else:
|
| 281 |
+
patience_counter += 1
|
| 282 |
+
print(f"No improvement ({patience_counter}/{CONFIG['patience']})")
|
| 283 |
+
|
| 284 |
+
if patience_counter >= CONFIG['patience']:
|
| 285 |
+
print("\nEarly stopping triggered!")
|
| 286 |
+
break
|
| 287 |
+
|
| 288 |
+
# Plot Training History
|
| 289 |
+
print("\n" + "="*60)
|
| 290 |
+
print("SAVING TRAINING GRAPHS")
|
| 291 |
+
print("="*60)
|
| 292 |
+
|
| 293 |
+
fig, axes = plt.subplots(1, 2, figsize=(15, 5))
|
| 294 |
+
|
| 295 |
+
# Loss plot
|
| 296 |
+
axes[0].plot(history['train_loss'], label='Train Loss', marker='o')
|
| 297 |
+
axes[0].plot(history['val_loss'], label='Val Loss', marker='s')
|
| 298 |
+
axes[0].set_xlabel('Epoch')
|
| 299 |
+
axes[0].set_ylabel('Loss')
|
| 300 |
+
axes[0].set_title('Training and Validation Loss')
|
| 301 |
+
axes[0].legend()
|
| 302 |
+
axes[0].grid(True, alpha=0.3)
|
| 303 |
+
|
| 304 |
+
# Accuracy plot
|
| 305 |
+
axes[1].plot(history['train_acc'], label='Train Acc', marker='o')
|
| 306 |
+
axes[1].plot(history['val_acc'], label='Val Acc', marker='s')
|
| 307 |
+
axes[1].set_xlabel('Epoch')
|
| 308 |
+
axes[1].set_ylabel('Accuracy (%)')
|
| 309 |
+
axes[1].set_title('Training and Validation Accuracy')
|
| 310 |
+
axes[1].legend()
|
| 311 |
+
axes[1].grid(True, alpha=0.3)
|
| 312 |
+
|
| 313 |
+
plt.tight_layout()
|
| 314 |
+
plt.savefig('training_history.png', dpi=300, bbox_inches='tight')
|
| 315 |
+
print("✓ Training graphs saved as 'training_history.png'")
|
| 316 |
+
|
| 317 |
+
# Load Best Model and Test
|
| 318 |
+
print("\n" + "="*60)
|
| 319 |
+
print("LOADING BEST MODEL AND TESTING")
|
| 320 |
+
print("="*60)
|
| 321 |
+
|
| 322 |
+
checkpoint = torch.load(CONFIG['model_save_path'])
|
| 323 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 324 |
+
print(f"✓ Loaded best model from epoch {checkpoint['epoch']+1}")
|
| 325 |
+
print(f" Best validation accuracy: {checkpoint['val_acc']:.2f}%")
|
| 326 |
+
|
| 327 |
+
# Test the model
|
| 328 |
+
model.eval()
|
| 329 |
+
all_preds = []
|
| 330 |
+
all_labels = []
|
| 331 |
+
|
| 332 |
+
with torch.no_grad():
|
| 333 |
+
for images, labels in tqdm(test_loader, desc='Testing'):
|
| 334 |
+
images = images.to(CONFIG['device'])
|
| 335 |
+
outputs = model(images)
|
| 336 |
+
_, predicted = outputs.max(1)
|
| 337 |
+
|
| 338 |
+
all_preds.extend(predicted.cpu().numpy())
|
| 339 |
+
all_labels.extend(labels.numpy())
|
| 340 |
+
|
| 341 |
+
# Calculate test accuracy
|
| 342 |
+
test_acc = 100. * np.sum(np.array(all_preds) == np.array(all_labels)) / len(all_labels)
|
| 343 |
+
print(f"\n{'='*60}")
|
| 344 |
+
print(f"TEST SET ACCURACY: {test_acc:.2f}%")
|
| 345 |
+
print(f"{'='*60}")
|
| 346 |
+
|
| 347 |
+
# Classification Report
|
| 348 |
+
print("\n" + "="*60)
|
| 349 |
+
print("CLASSIFICATION REPORT")
|
| 350 |
+
print("="*60)
|
| 351 |
+
print(classification_report(all_labels, all_preds, target_names=class_names, digits=4))
|
| 352 |
+
|
| 353 |
+
# Confusion Matrix
|
| 354 |
+
cm = confusion_matrix(all_labels, all_preds)
|
| 355 |
+
plt.figure(figsize=(10, 8))
|
| 356 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
|
| 357 |
+
xticklabels=class_names, yticklabels=class_names)
|
| 358 |
+
plt.title('Confusion Matrix - Test Set')
|
| 359 |
+
plt.ylabel('True Label')
|
| 360 |
+
plt.xlabel('Predicted Label')
|
| 361 |
+
plt.xticks(rotation=45, ha='right')
|
| 362 |
+
plt.yticks(rotation=0)
|
| 363 |
+
plt.tight_layout()
|
| 364 |
+
plt.savefig('confusion_matrix.png', dpi=300, bbox_inches='tight')
|
| 365 |
+
print("\n✓ Confusion matrix saved as 'confusion_matrix.png'")
|
| 366 |
+
|
| 367 |
+
print("\n" + "="*60)
|
| 368 |
+
print("TRAINING COMPLETE!")
|
| 369 |
+
print("="*60)
|
| 370 |
+
print(f"✓ Best model saved: {CONFIG['model_save_path']}")
|
| 371 |
+
print(f"✓ Training history: training_history.png")
|
| 372 |
+
print(f"✓ Confusion matrix: confusion_matrix.png")
|
| 373 |
+
print(f"✓ Final test accuracy: {test_acc:.2f}%")
|