Muhammad Abdiel Al Hafiz
commited on
Commit
·
6704e8f
1
Parent(s):
910566d
adjust output for disease explanation
Browse files
app.py
CHANGED
@@ -5,48 +5,70 @@ from PIL import Image
|
|
5 |
import google.generativeai as genai
|
6 |
import os
|
7 |
|
|
|
8 |
model_path = 'model'
|
9 |
model = tf.saved_model.load(model_path)
|
10 |
|
|
|
11 |
api_key = os.getenv("GEMINI_API_KEY")
|
12 |
genai.configure(api_key=api_key)
|
13 |
|
|
|
14 |
labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
|
15 |
|
16 |
def get_disease_detail(disease_name):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def predict_image(image):
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
# Highest prediction
|
35 |
-
top_index = np.argmax(predictions.numpy(), axis=1)[0]
|
36 |
-
top_label = labels[top_index]
|
37 |
-
top_probability = predictions.numpy()[0][top_index]
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
f"
|
44 |
-
f"**What
|
45 |
-
f"**
|
46 |
-
f"**
|
47 |
-
|
|
|
48 |
|
49 |
-
|
|
|
50 |
|
51 |
# Example images
|
52 |
example_images = [
|
@@ -63,13 +85,14 @@ interface = gr.Interface(
|
|
63 |
fn=predict_image,
|
64 |
inputs=gr.Image(type="pil"),
|
65 |
outputs=[
|
66 |
-
|
67 |
-
|
|
|
68 |
examples=example_images,
|
69 |
title="Eye Diseases Classifier",
|
70 |
description=(
|
71 |
-
|
72 |
-
|
73 |
),
|
74 |
allow_flagging="never"
|
75 |
)
|
|
|
5 |
import google.generativeai as genai
|
6 |
import os
|
7 |
|
8 |
+
# Load TensorFlow model
|
9 |
model_path = 'model'
|
10 |
model = tf.saved_model.load(model_path)
|
11 |
|
12 |
+
# Set up Gemini API
|
13 |
api_key = os.getenv("GEMINI_API_KEY")
|
14 |
genai.configure(api_key=api_key)
|
15 |
|
16 |
+
# Labels for classification
|
17 |
labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
|
18 |
|
19 |
def get_disease_detail(disease_name):
|
20 |
+
prompt = (
|
21 |
+
f"Diagnosis: {disease_name}\n\n"
|
22 |
+
"What is it?\n(Description about the disease)\n\n"
|
23 |
+
"What causes it?\n(Explain what causes the disease)\n\n"
|
24 |
+
"Suggestions\n(Suggestion to user)\n\n"
|
25 |
+
"Reminder: Always seek professional help, such as a doctor."
|
26 |
+
)
|
27 |
+
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
|
28 |
+
return response.text.strip()
|
29 |
+
|
30 |
+
def safe_extract_section(text, start_keyword, end_keyword):
|
31 |
+
""" Safely extract sections from the Gemini response based on start and end keywords."""
|
32 |
+
if start_keyword in text and end_keyword in text:
|
33 |
+
return text.split(start_keyword)[1].split(end_keyword)[0].strip()
|
34 |
+
elif start_keyword in text:
|
35 |
+
return text.split(start_keyword)[1].strip()
|
36 |
+
else:
|
37 |
+
return "Information not available."
|
38 |
|
39 |
def predict_image(image):
|
40 |
+
# Preprocess the image
|
41 |
+
image_resized = image.resize((224, 224))
|
42 |
+
image_array = np.array(image_resized).astype(np.float32) / 255.0
|
43 |
+
image_array = np.expand_dims(image_array, axis=0)
|
44 |
+
|
45 |
+
# Run prediction
|
46 |
+
predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0']
|
47 |
+
top_index = np.argmax(predictions.numpy(), axis=1)[0]
|
48 |
+
top_label = labels[top_index]
|
49 |
+
top_probability = predictions.numpy()[0][top_index] * 100 # Convert to percentage
|
50 |
|
51 |
+
# Get explanation from Gemini API
|
52 |
+
explanation = get_disease_detail(top_label)
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
# Extract relevant sections from the explanation
|
55 |
+
diagnosis_section = f"**Diagnosis:** {top_label}"
|
56 |
+
what_is_it = safe_extract_section(explanation, "What is it?", "What causes it?")
|
57 |
+
causes = safe_extract_section(explanation, "What causes it?", "Suggestions")
|
58 |
+
suggestions = safe_extract_section(explanation, "Suggestions", "Reminder")
|
59 |
+
reminder = "Always seek professional help, such as a doctor."
|
60 |
|
61 |
+
# Format explanation
|
62 |
+
formatted_explanation = (
|
63 |
+
f"{diagnosis_section}\n\n"
|
64 |
+
f"**What is it?** {what_is_it}\n\n"
|
65 |
+
f"**What causes it?** {causes}\n\n"
|
66 |
+
f"**Suggestions:** {suggestions}\n\n"
|
67 |
+
f"**Reminder:** {reminder}"
|
68 |
+
)
|
69 |
|
70 |
+
# Return both the prediction and the explanation
|
71 |
+
return {top_label: top_probability}, formatted_explanation
|
72 |
|
73 |
# Example images
|
74 |
example_images = [
|
|
|
85 |
fn=predict_image,
|
86 |
inputs=gr.Image(type="pil"),
|
87 |
outputs=[
|
88 |
+
gr.Label(num_top_classes=1, label="Prediction"),
|
89 |
+
gr.Textbox(label="Explanation")
|
90 |
+
],
|
91 |
examples=example_images,
|
92 |
title="Eye Diseases Classifier",
|
93 |
description=(
|
94 |
+
"Upload an image of an eye fundus, and the model will predict it.\n\n"
|
95 |
+
"**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future."
|
96 |
),
|
97 |
allow_flagging="never"
|
98 |
)
|