Muhammad Abdiel Al Hafiz commited on
Commit
ee36b3c
·
1 Parent(s): 95a20a3

try integrate gemini

Browse files
Files changed (1) hide show
  1. app.py +14 -2
app.py CHANGED
@@ -2,12 +2,22 @@ import gradio as gr
2
  import tensorflow as tf
3
  import numpy as np
4
  from PIL import Image
 
 
5
 
6
  model_path = 'model'
7
  model = tf.saved_model.load(model_path)
8
 
 
 
 
9
  labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
10
 
 
 
 
 
 
11
  def predict_image(image):
12
  image_resized = image.resize((224, 224))
13
  image_array = np.array(image_resized).astype(np.float32) / 255.0
@@ -20,7 +30,9 @@ def predict_image(image):
20
  top_label = labels[top_index]
21
  top_probability = predictions.numpy()[0][top_index]
22
 
23
- return {top_label:top_probability}
 
 
24
 
25
  # Example images
26
  example_images = [
@@ -36,7 +48,7 @@ example_images = [
36
  interface = gr.Interface(
37
  fn=predict_image,
38
  inputs=gr.Image(type="pil"),
39
- outputs=gr.Label(num_top_classes=1, label="Prediction"),
40
  examples=example_images,
41
  title="Eye Diseases Classifier",
42
  description="Upload an image of an eye fundus, and the model will predict it.\n\n**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future.",
 
2
  import tensorflow as tf
3
  import numpy as np
4
  from PIL import Image
5
+ import google.generativeasi as genai
6
+ import os
7
 
8
  model_path = 'model'
9
  model = tf.saved_model.load(model_path)
10
 
11
+ api_key = os.getenv("GEMINI_API_KEY")
12
+ genai.configure(api_key=api_key)
13
+
14
  labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
15
 
16
+ def get_disease_detail(disease_name):
17
+ prompt = f"Diagnosis: {disease_name}\n\nWhat is it?\n(Description about {disease_name})\n\nWhat cause it?\n(Explain what causes {disease_name})\n\nSuggestion\n(Suggestion to user)\n\nReminder: Always seek professional help, such as a doctor."
18
+ response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
19
+ return response.text
20
+
21
  def predict_image(image):
22
  image_resized = image.resize((224, 224))
23
  image_array = np.array(image_resized).astype(np.float32) / 255.0
 
30
  top_label = labels[top_index]
31
  top_probability = predictions.numpy()[0][top_index]
32
 
33
+ explanation = get_disease_detail(top_label)
34
+
35
+ return {top_label: top_probability, "explanation": explanation}
36
 
37
  # Example images
38
  example_images = [
 
48
  interface = gr.Interface(
49
  fn=predict_image,
50
  inputs=gr.Image(type="pil"),
51
+ outputs=[gr.Label(num_top_classes=1, label="Prediction"), gr.Textbox(label="Explanation")],
52
  examples=example_images,
53
  title="Eye Diseases Classifier",
54
  description="Upload an image of an eye fundus, and the model will predict it.\n\n**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future.",