Muhammad Abdiel Al Hafiz
commited on
Commit
·
f132889
1
Parent(s):
e9ff5ea
just trying to fix
Browse files
app.py
CHANGED
@@ -5,14 +5,18 @@ from PIL import Image
|
|
5 |
import google.generativeai as genai
|
6 |
import os
|
7 |
|
|
|
8 |
model_path = 'model'
|
9 |
model = tf.saved_model.load(model_path)
|
10 |
|
|
|
11 |
api_key = os.getenv("GEMINI_API_KEY")
|
12 |
genai.configure(api_key=api_key)
|
13 |
|
|
|
14 |
labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
|
15 |
|
|
|
16 |
def get_disease_detail(disease_name):
|
17 |
prompt = (
|
18 |
f"Diagnosis: {disease_name}\n\n"
|
@@ -23,25 +27,28 @@ def get_disease_detail(disease_name):
|
|
23 |
)
|
24 |
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
|
25 |
|
26 |
-
# Safely extract
|
27 |
-
return response.result if hasattr(response, 'result') else "No explanation available."
|
28 |
|
|
|
29 |
def predict_image(image):
|
|
|
30 |
image_resized = image.resize((224, 224))
|
31 |
image_array = np.array(image_resized).astype(np.float32) / 255.0
|
32 |
image_array = np.expand_dims(image_array, axis=0)
|
33 |
|
|
|
34 |
predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0']
|
35 |
|
36 |
-
#
|
37 |
top_index = np.argmax(predictions.numpy(), axis=1)[0]
|
38 |
top_label = labels[top_index]
|
39 |
-
top_probability = predictions.numpy()[0][top_index]
|
40 |
|
41 |
# Fetch explanation from Gemini API
|
42 |
explanation = get_disease_detail(top_label)
|
43 |
|
44 |
-
#
|
45 |
return {top_label: top_probability}, explanation
|
46 |
|
47 |
# Example images
|
@@ -60,7 +67,7 @@ interface = gr.Interface(
|
|
60 |
inputs=gr.Image(type="pil"),
|
61 |
outputs=[
|
62 |
gr.Label(num_top_classes=1, label="Prediction"),
|
63 |
-
gr.
|
64 |
],
|
65 |
examples=example_images,
|
66 |
title="Eye Diseases Classifier",
|
@@ -71,4 +78,5 @@ interface = gr.Interface(
|
|
71 |
allow_flagging="never"
|
72 |
)
|
73 |
|
|
|
74 |
interface.launch(share=True)
|
|
|
5 |
import google.generativeai as genai
|
6 |
import os
|
7 |
|
8 |
+
# Load the model
|
9 |
model_path = 'model'
|
10 |
model = tf.saved_model.load(model_path)
|
11 |
|
12 |
+
# Configure Google Gemini API
|
13 |
api_key = os.getenv("GEMINI_API_KEY")
|
14 |
genai.configure(api_key=api_key)
|
15 |
|
16 |
+
# Labels for the classification model
|
17 |
labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
|
18 |
|
19 |
+
# Function to get disease details from Gemini API
|
20 |
def get_disease_detail(disease_name):
|
21 |
prompt = (
|
22 |
f"Diagnosis: {disease_name}\n\n"
|
|
|
27 |
)
|
28 |
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
|
29 |
|
30 |
+
# Safely extract the content of the response (adjust if different field is used)
|
31 |
+
return response.result.strip() if hasattr(response, 'result') else "No explanation available."
|
32 |
|
33 |
+
# Prediction function for the image
|
34 |
def predict_image(image):
|
35 |
+
# Preprocess image
|
36 |
image_resized = image.resize((224, 224))
|
37 |
image_array = np.array(image_resized).astype(np.float32) / 255.0
|
38 |
image_array = np.expand_dims(image_array, axis=0)
|
39 |
|
40 |
+
# Get model predictions
|
41 |
predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0']
|
42 |
|
43 |
+
# Get highest probability prediction
|
44 |
top_index = np.argmax(predictions.numpy(), axis=1)[0]
|
45 |
top_label = labels[top_index]
|
46 |
+
top_probability = predictions.numpy()[0][top_index]
|
47 |
|
48 |
# Fetch explanation from Gemini API
|
49 |
explanation = get_disease_detail(top_label)
|
50 |
|
51 |
+
# Return the prediction and the explanation
|
52 |
return {top_label: top_probability}, explanation
|
53 |
|
54 |
# Example images
|
|
|
67 |
inputs=gr.Image(type="pil"),
|
68 |
outputs=[
|
69 |
gr.Label(num_top_classes=1, label="Prediction"),
|
70 |
+
gr.Textbox(label="Explanation") # Regular Textbox for normal text
|
71 |
],
|
72 |
examples=example_images,
|
73 |
title="Eye Diseases Classifier",
|
|
|
78 |
allow_flagging="never"
|
79 |
)
|
80 |
|
81 |
+
# Launch the interface
|
82 |
interface.launch(share=True)
|