import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = 'model' model = tf.saved_model.load(model_path) labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal'] def predict_image(image): image_resized = image.resize((224, 224)) image_array = np.array(image_resized).astype(np.float32) / 255.0 image_array = np.expand_dims(image_array, axis=0) predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0'] # Highest prediction top_index = np.argmax(predictions.numpy(), axis=1)[0] top_label = labels[top_index] top_probability = predictions.numpy()[0][top_index] return {top_label:top_probability} # Example images example_images = [ ["exp_eye_images/0_right_h.png"], ["exp_eye_images/03fd50da928d_dr.png"], ["exp_eye_images/108_right_h.png"], ["exp_eye_images/1062_right_c.png"], ["exp_eye_images/1084_right_c.png"], ["exp_eye_images/image_1002_g.png"] ] # Gradio Interface interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=1, label="Prediction"), examples=example_images, title="Eye Diseases Classifier", description="Upload an image of an eye fundus, and the model will predict it.\n\n**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future.", allow_flagging="never" ) interface.launch(share=True)