import logging import sys import matplotlib from agenteval.cli import SUBMISSION_METADATA_FILENAME from agenteval.models import SubmissionMetadata from datasets.exceptions import DataFilesNotFoundError from gradio_modal import Modal matplotlib.use('Agg') import os import shutil import tarfile import tempfile from datetime import datetime, timedelta, timezone from email.utils import parseaddr from pathlib import Path import gradio as gr import requests from agenteval import ( process_eval_logs, upload_folder_to_hf, ) from agenteval.leaderboard.models import LeaderboardSubmission from agenteval.leaderboard.upload import sanitize_path_component from datasets import Dataset, DatasetDict, VerificationMode, load_dataset from datasets.data_files import EmptyDatasetError from huggingface_hub import HfApi from config import ( CONFIG_NAME, CONTACT_DATASET, EXTRACTED_DATA_DIR, IS_INTERNAL, LOCAL_DEBUG, RESULTS_DATASET, SUBMISSION_DATASET, ) from content import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, SUBMISSION_CONFIRMATION, format_error, format_log, format_warning, ) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) api = HfApi() MAX_UPLOAD_BYTES = 5e9 os.makedirs(EXTRACTED_DATA_DIR, exist_ok=True) # --- Submission Logic (largely unchanged from original, ensure LeaderboardSubmission and other deps are fine) --- def try_load_dataset_submission(*args, **kwargs) -> DatasetDict: # Renamed to avoid conflict if LV has one try: return load_dataset(*args, **kwargs) except EmptyDatasetError: return DatasetDict() except ValueError: # Handles cases where dataset is empty or ill-formed return DatasetDict() except DataFilesNotFoundError: return DatasetDict() def checked_upload_folder( api_hf: HfApi, # Renamed to avoid conflict with global api folder_path: str, repo_id: str, config_name_ul: str, # Renamed split_ul: str, # Renamed submission_name_ul: str, # Renamed ) -> str: total = 0 for root, _, files in os.walk(folder_path): for f_ul in files: # Renamed total += os.path.getsize(os.path.join(root, f_ul)) if total > MAX_UPLOAD_BYTES: raise ValueError( f"Upload too large: exceeds {MAX_UPLOAD_BYTES // (1024**2)} MB limit." ) return upload_folder_to_hf( api=api_hf, # Use renamed parameter folder_path=folder_path, repo_id=repo_id, config_name=config_name_ul, split=split_ul, submission_name=submission_name_ul, ) def show_loading_spinner(): return gr.update(visible=True) def add_new_eval( val_or_test: str, agent_name: str | None, agent_description: str, agent_url: str, openness: str | None, degree_of_control: str | None, path_to_file: tempfile._TemporaryFileWrapper | None, username: str, role: str, email: str, email_opt_in: bool, profile: gr.OAuthProfile, ): if not agent_name: return ( format_warning("Please provide an agent name."), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) if path_to_file is None: return ( format_warning("Please attach a .tar.gz file."), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) logger.info(f"agent {agent_name}: Checking submission") # Load current eval_results for submission checks # This is a bit redundant if display part reloads it, but submission needs its own consistent view current_eval_results_for_submission = try_load_dataset_submission( RESULTS_DATASET, CONFIG_NAME, download_mode="force_redownload", # Or a less aggressive mode verification_mode=VerificationMode.NO_CHECKS, ) submission_time = datetime.now(timezone.utc) if not username or username.strip() == "": username = profile.username # Default to HF username logger.debug(f"agent {agent_name}: User account age check {profile.username}") try: # Account age check disabled for launch. # https://github.com/allenai/astabench-issues/issues/419 # if _is_hf_acct_too_new(submission_time, profile.username): # return ( # format_error("This account is not authorized to submit here (account too new)."), # error_message # gr.update(visible=True), # error_modal # gr.update(visible=False), # success_modal # gr.update(visible=False) # loading_modal # ) pass except Exception as e: logger.warning(f"Error checking user account age: {e}") return ( format_error("Could not verify account age. Please try again later."), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) logger.debug(f"agent {agent_name}: Submission frequency check {profile.username}") contact_infos = try_load_dataset_submission( CONTACT_DATASET, CONFIG_NAME, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True ) user_submission_dates = sorted( datetime.fromisoformat(row["submit_time"]) for row in contact_infos.get(val_or_test, []) if row["username_auth"] == profile.username ) if user_submission_dates and (submission_time - user_submission_dates[-1] < timedelta(days=1)): logger.info(f"agent {agent_name}: Denied submission because user {username} submitted recently") return ( format_error("You already submitted once in the last 24h for this split; please try again later."), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) logger.debug(f"agent {agent_name}: Email validation {email}") _, parsed_mail = parseaddr(email) if "@" not in parsed_mail: return ( format_warning("Please provide a valid email address."), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) logger.debug(f"agent {agent_name}: Duplicate submission check") if val_or_test in current_eval_results_for_submission and len(current_eval_results_for_submission[val_or_test]) > 0: existing_submissions = current_eval_results_for_submission[val_or_test].to_dict().get("submission", []) for sub_item in existing_submissions: if (sub_item.get("agent_name", "").lower() == agent_name.lower() and sub_item.get("username", "").lower() == username.lower()): return ( format_warning("This agent name by this user has already been submitted to this split."), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) safe_username = sanitize_path_component(username) safe_agent_name = sanitize_path_component(agent_name) extracted_dir = os.path.join(EXTRACTED_DATA_DIR, f"{safe_username}_{safe_agent_name}") logger.debug(f"agent {agent_name}: File extraction to {extracted_dir}") try: if os.path.exists(extracted_dir): shutil.rmtree(extracted_dir) os.makedirs(extracted_dir, exist_ok=True) with tarfile.open(path_to_file.name, "r:gz") as tar: members_extracted = 0 for member in tar.getmembers(): if not member.isreg(): continue fname = os.path.basename(member.name) if not fname or fname.startswith("."): continue fobj = tar.extractfile(member) if not fobj: continue with open(os.path.join(extracted_dir, fname), "wb") as out: out.write(fobj.read()) members_extracted +=1 if members_extracted == 0: return ( format_error("Submission tarball is empty or contains no valid files."), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) except Exception as e: return ( format_error(f"Error extracting file: {e}. Ensure it's a valid .tar.gz."), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) submission_name = f"{safe_username}_{safe_agent_name}_{submission_time.strftime('%Y-%m-%d_%H-%M-%S')}" logger.debug(f"agent {agent_name}: Generate submission.json") subm_meta = SubmissionMetadata( agent_name=agent_name, agent_description=agent_description, agent_url=agent_url, openness=openness, tool_usage=degree_of_control, username=username, submit_time=submission_time, ) with open(os.path.join(extracted_dir, SUBMISSION_METADATA_FILENAME), "w", encoding="utf-8") as fp: fp.write(subm_meta.model_dump_json(indent=2)) logger.info(f"agent {agent_name}: Upload raw (unscored) submission files") try: checked_upload_folder(api, extracted_dir, SUBMISSION_DATASET, CONFIG_NAME, val_or_test, submission_name) except ValueError as e: return ( format_error(str(e)), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) except Exception as e: return ( format_error(f"Failed to upload raw submission: {e}"), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) logger.info(f"agent {agent_name}: Save contact information") contact_info = subm_meta.model_dump() contact_info["submit_time"] = submission_time.isoformat() contact_info["username_auth"] = profile.username contact_info["email"] = email contact_info["email_opt_in"] = email_opt_in contact_info["role"] = role logger.debug(f"agent {agent_name}: Contact info: {contact_info}") if val_or_test in contact_infos: contact_infos[val_or_test] = contact_infos[val_or_test].add_item(contact_info) else: contact_infos[val_or_test] = Dataset.from_list([contact_info]) try: contact_infos.push_to_hub(CONTACT_DATASET, config_name=CONFIG_NAME) except Exception as e: return ( format_error(f"Submission recorded, but contact info failed to save: {e}"), # error_message gr.update(visible=True), # error_modal gr.update(visible=False), # success_modal gr.update(visible=False) # loading_modal ) logger.info(f"Agent '{agent_name}' submitted successfully by '{username}' to '{val_or_test}' split.") return ( "", # error_message gr.update(visible=False), # error_modal gr.update(visible=True), # success_modal gr.update(visible=False) # loading_modal ) def _is_hf_acct_too_new(submission_time: datetime, username: str): user_data_resp = requests.get(f"https://huggingface.co/api/users/{username}/overview") user_data_resp.raise_for_status() creation_date_str = user_data_resp.json()["createdAt"] created_at = datetime.strptime(creation_date_str, "%Y-%m-%dT%H:%M:%S.%fZ").replace(tzinfo=timezone.utc) return submission_time - created_at < timedelta(days=60) openness_label_html = """
Agent Openness
""" agent_tooling_label_html = """
Agent Tooling
""" heading_html = """

🚀 Submit an agent for evaluation

Submit your agent to AstaBench for evaluation on real-world scientific tasks. Once submitted, your run will be reviewed by our team. If there are any issues, we’ll reach out within 5–7 business days. We’re working toward full automation, but in the meantime, human review helps ensure quality and trust.

How to run an evaluation

Please follow the steps in our README. You’ll upload your run file at the end of this form.

""" # --- Submission Accordion --- def build_page(): with gr.Column(elem_id="submission-page-container"): gr.HTML(heading_html) gr.LoginButton() with gr.Group(elem_classes="custom-form-group"): gr.HTML(value="""

Submitter Information

""", elem_id="submitter-info-label-html") gr.HTML(value="""

Username

""", elem_classes="form-label") username_tb = gr.Textbox(label="This will show on the leaderboard. By default, we’ll use your Hugging Face username; but you can enter your organization name instead (e.g., university, company, or lab).") gr.HTML(value="""

Role

""", elem_classes="form-label") role = gr.Dropdown(label="Please select the role that most closely matches your current position. Helps us improve AstaBench for different user types. Not displayed on the leaderboard.", interactive=True, choices=[ "Undergraduate Student", "Masters Student", "PhD Student", "Postdoctoral Researcher", "Academic Faculty (e.g., Professor, Lecturer)", "Industry Researcher (e.g., Research Scientist, Applied Scientist)", "Engineer or Developer (e.g., Software or ML Engineer)", "Data Scientist or Analyst", "Product or Program Manager", "Startup Founder or Independent Researcher", "Other" ]) gr.HTML(value="""

Contact email

""", elem_classes="form-label") mail_tb = gr.Textbox(label="We'll only use your email to communicate about your submission.") mail_opt_in = gr.Checkbox(label="I’m open to being contacted by email for user research studies or feedback opportunities.") with gr.Group(elem_classes="custom-form-group"): gr.HTML(value="""

Agent Information

""", elem_id="agent-info-label-html") gr.HTML(value="""

Split

""", elem_classes="form-label") level_of_test_radio = gr.Radio(choices=[ ("Test set", "test"), ("Validation set", "validation"), ], elem_classes="form-label-fieldset", value="validation", label="The Test Set is used for final leaderboard rankings. The Validation Set is for development and iteration. Choose based on your evaluation goal.") gr.HTML(value="""

Agent name

""", elem_classes="form-label") agent_name_tb = gr.Textbox(label="This is how your agent will appear on the leaderboard. Use a clear, descriptive name (e.g., Asta Scholar QA, Perplexity Deep Research). Omit model names (e.g. GPT-4, Mistral) as they’ll be shown automatically based on your logs.") gr.HTML(value="""

Agent description

""", elem_classes="form-label") agent_desc_tb = gr.Textbox(label="Briefly describe your agent’s approach, core strategies, or what makes it distinct. This description may appear on the leaderboard.") gr.HTML(value="""

URL

""", elem_classes="form-label") agent_url_tb = gr.Textbox(label="Link to more information about your agent (e.g. GitHub repo, blog post, or website). This optional link may be shown on the leaderboard to let others explore your agent in more depth.") gr.HTML(value="""

Agent openness

""", elem_classes="form-label") openness_radio = gr.Radio(["Open Source","Open Source Open Weights", "API Available", "Closed"], elem_classes="form-label-fieldset", value=None, label="This affects how your submission is categorized on the leaderboard. Choose based on the availability of your code, model weights, or APIs.") gr.HTML(value="""

Agent tooling

""", elem_classes="form-label") degree_of_control_radio = gr.Radio(["Standard","Equivalent", "Fully Custom"], elem_classes="form-label-fieldset",value=None, label="Choose based on the tools and the execution environment your agent used during evaluation.") gr.HTML(value="""

Submission file

""", elem_classes="form-label") gr.HTML("
Upload your run file, which is an archive prepared following the instructions in the README (“Submitting to the Leaderboard”).
") file_upload_comp = gr.File( show_label=False, file_types=[".gz", ".tar.gz"], ) submit_eval_button = gr.Button("Submit Evaluation", elem_id="submission-button") # Modals for loading spinner, success and error messages with Modal(visible=False, elem_id="submission-modal") as loading_modal: with gr.Column(elem_id="submission-modal-content"): gr.HTML('

Processing your submission...

') with Modal(visible=False, elem_id="submission-modal") as error_modal: with gr.Column(elem_id="submission-modal-content"): gr.Markdown("## ⚠️ Error") error_message = gr.Markdown() with Modal(visible=False, elem_id="submission-modal") as success_modal: with gr.Column(elem_id="submission-modal-content"): gr.Markdown(SUBMISSION_CONFIRMATION) submit_eval_button.click( show_loading_spinner, None, [loading_modal], ).then( add_new_eval, [ level_of_test_radio, agent_name_tb, agent_desc_tb, agent_url_tb, openness_radio, degree_of_control_radio, file_upload_comp, username_tb, role, mail_tb, mail_opt_in ], [error_message, error_modal, success_modal, loading_modal], ) # hiding this for now till we have the real paper data # with gr.Accordion("📙 Citation", open=False): # gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button-main", interactive=False)