Spaces:
Build error
Build error
import base64 | |
import os | |
import requests | |
from io import BytesIO | |
from openai import OpenAI | |
from pdf2image import convert_from_path | |
from langchain.schema import Document | |
from modules.config.constants import TIMEOUT | |
class GPTParser: | |
""" | |
This class uses OpenAI's GPT-4o mini model to parse PDFs and extract text, images and equations. | |
It is the most advanced parser in the system and is able to handle complex formats and layouts | |
""" | |
def __init__(self): | |
self.client = OpenAI() | |
self.api_key = os.getenv("OPENAI_API_KEY") | |
self.prompt = """ | |
The provided documents are images of PDFs of lecture slides of deep learning material. | |
They contain LaTeX equations, images, and text. | |
The goal is to extract the text, images and equations from the slides and convert everything to markdown format. Some of the equations may be complicated. | |
The markdown should be clean and easy to read, and any math equation should be converted to LaTeX, between $$. | |
For images, give a description and if you can, a source. Separate each page with '---'. | |
Just respond with the markdown. Do not include page numbers or any other metadata. Do not try to provide titles. Strictly the content. | |
""" | |
def parse(self, pdf_path): | |
images = convert_from_path(pdf_path) | |
encoded_images = [self.encode_image(image) for image in images] | |
chunks = [encoded_images[i : i + 5] for i in range(0, len(encoded_images), 5)] | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {self.api_key}", | |
} | |
output = "" | |
for chunk_num, chunk in enumerate(chunks): | |
content = [ | |
{ | |
"type": "image_url", | |
"image_url": {"url": f"data:image/jpeg;base64,{image}"}, | |
} | |
for image in chunk | |
] | |
content.insert(0, {"type": "text", "text": self.prompt}) | |
payload = { | |
"model": "gpt-4o-mini", | |
"messages": [{"role": "user", "content": content}], | |
} | |
response = requests.post( | |
"https://api.openai.com/v1/chat/completions", | |
headers=headers, | |
json=payload, | |
timeout=TIMEOUT, | |
) | |
resp = response.json() | |
chunk_output = ( | |
resp["choices"][0]["message"]["content"] | |
.replace("```", "") | |
.replace("markdown", "") | |
.replace("````", "") | |
) | |
output += chunk_output + "\n---\n" | |
output = output.split("\n---\n") | |
output = [doc for doc in output if doc.strip() != ""] | |
documents = [ | |
Document(page_content=page, metadata={"source": pdf_path, "page": i}) | |
for i, page in enumerate(output) | |
] | |
return documents | |
def encode_image(self, image): | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
return base64.b64encode(buffered.getvalue()).decode("utf-8") | |