File size: 8,198 Bytes
450b75a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import requests
from bs4 import BeautifulSoup
from tqdm import tqdm
import chainlit as cl
from langchain import PromptTemplate
import requests
from bs4 import BeautifulSoup
from urllib.parse import urlparse, urljoin, urldefrag
import asyncio
import aiohttp
from aiohttp import ClientSession

try:
    from modules.constants import *
except:
    from constants import *

"""
Ref: https://python.plainenglish.io/scraping-the-subpages-on-a-website-ea2d4e3db113
"""


class WebpageCrawler:
    def __init__(self):
        self.dict_href_links = {}

    async def fetch(self, session: ClientSession, url: str) -> str:
        async with session.get(url) as response:
            try:
                return await response.text()
            except UnicodeDecodeError:
                return await response.text(encoding="latin1")

    def url_exists(self, url: str) -> bool:
        try:
            response = requests.head(url)
            return response.status_code == 200
        except requests.ConnectionError:
            return False

    async def get_links(self, session: ClientSession, website_link: str, base_url: str):
        html_data = await self.fetch(session, website_link)
        soup = BeautifulSoup(html_data, "html.parser")
        list_links = []
        for link in soup.find_all("a", href=True):
            href = link["href"].strip()
            full_url = urljoin(base_url, href)
            normalized_url = self.normalize_url(full_url)  # sections removed
            if (
                normalized_url not in self.dict_href_links
                and self.is_child_url(normalized_url, base_url)
                and self.url_exists(normalized_url)
            ):
                self.dict_href_links[normalized_url] = None
                list_links.append(normalized_url)

        return list_links

    async def get_subpage_links(
        self, session: ClientSession, urls: list, base_url: str
    ):
        tasks = [self.get_links(session, url, base_url) for url in urls]
        results = await asyncio.gather(*tasks)
        all_links = [link for sublist in results for link in sublist]
        return all_links

    async def get_all_pages(self, url: str, base_url: str):
        async with aiohttp.ClientSession() as session:
            dict_links = {url: "Not-checked"}
            counter = None
            while counter != 0:
                unchecked_links = [
                    link
                    for link, status in dict_links.items()
                    if status == "Not-checked"
                ]
                if not unchecked_links:
                    break
                new_links = await self.get_subpage_links(
                    session, unchecked_links, base_url
                )
                for link in unchecked_links:
                    dict_links[link] = "Checked"
                    print(f"Checked: {link}")
                dict_links.update(
                    {
                        link: "Not-checked"
                        for link in new_links
                        if link not in dict_links
                    }
                )
                counter = len(
                    [
                        status
                        for status in dict_links.values()
                        if status == "Not-checked"
                    ]
                )

            checked_urls = [
                url for url, status in dict_links.items() if status == "Checked"
            ]
            return checked_urls

    def is_webpage(self, url: str) -> bool:
        try:
            response = requests.head(url, allow_redirects=True)
            content_type = response.headers.get("Content-Type", "").lower()
            return "text/html" in content_type
        except requests.RequestException:
            return False

    def clean_url_list(self, urls):
        files, webpages = [], []

        for url in urls:
            if self.is_webpage(url):
                webpages.append(url)
            else:
                files.append(url)

        return files, webpages

    def is_child_url(self, url, base_url):
        return url.startswith(base_url)

    def normalize_url(self, url: str):
        # Strip the fragment identifier
        defragged_url, _ = urldefrag(url)
        return defragged_url


def get_urls_from_file(file_path: str):
    """
    Function to get urls from a file
    """
    with open(file_path, "r") as f:
        urls = f.readlines()
    urls = [url.strip() for url in urls]
    return urls


def get_base_url(url):
    parsed_url = urlparse(url)
    base_url = f"{parsed_url.scheme}://{parsed_url.netloc}/"
    return base_url


def get_prompt(config):
    if config["llm_params"]["use_history"]:
        if config["llm_params"]["llm_loader"] == "local_llm":
            custom_prompt_template = tinyllama_prompt_template_with_history
        elif config["llm_params"]["llm_loader"] == "openai":
            custom_prompt_template = openai_prompt_template_with_history
        # else:
        #     custom_prompt_template = tinyllama_prompt_template_with_history # default
        prompt = PromptTemplate(
            template=custom_prompt_template,
            input_variables=["context", "chat_history", "question"],
        )
    else:
        if config["llm_params"]["llm_loader"] == "local_llm":
            custom_prompt_template = tinyllama_prompt_template
        elif config["llm_params"]["llm_loader"] == "openai":
            custom_prompt_template = openai_prompt_template
        # else:
        #     custom_prompt_template = tinyllama_prompt_template
        prompt = PromptTemplate(
            template=custom_prompt_template,
            input_variables=["context", "question"],
        )
    return prompt


def get_sources(res, answer):
    source_elements = []
    source_dict = {}  # Dictionary to store URL elements

    for idx, source in enumerate(res["source_documents"]):
        source_metadata = source.metadata
        url = source_metadata["source"]
        score = source_metadata.get("score", "N/A")
        page = source_metadata.get("page", 1)
        date = source_metadata.get("date", "N/A")

        url_name = f"{url}_{page}"
        if url_name not in source_dict:
            source_dict[url_name] = {
                "text": source.page_content,
                "url": url,
                "score": score,
                "page": page,
                "date": date,
            }
        else:
            source_dict[url_name]["text"] += f"\n\n{source.page_content}"

    # First, display the answer
    full_answer = "**Answer:**\n"
    full_answer += answer

    # Then, display the sources
    full_answer += "\n\n**Sources:**\n"
    for idx, (url_name, source_data) in enumerate(source_dict.items()):
        full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n"

        name = f"Source {idx + 1} Text\n"
        full_answer += name
        source_elements.append(
            cl.Text(name=name, content=source_data["text"], display="side")
        )

        # Add a PDF element if the source is a PDF file
        if source_data["url"].lower().endswith(".pdf"):
            name = f"Source {idx + 1} PDF\n"
            full_answer += name
            pdf_url = f"{source_data['url']}#page={source_data['page']+1}"
            source_elements.append(cl.Pdf(name=name, url=pdf_url, display="side"))

    full_answer += "\n**Metadata:**\n"
    for idx, (url_name, source_data) in enumerate(source_dict.items()):
        full_answer += f"Source {idx+1} Metadata\n"
        source_elements.append(
            cl.Text(
                name=f"Source {idx+1} Metadata",
                content=f"Page: {source_data['page']}\nDate: {source_data['date']}\n",
                display="side",
            )
        )

    return full_answer, source_elements


def get_metadata(file_names):
    """
    Function to get any additional metadata from the files
    Returns a dict with the file_name: {metadata: value}
    """
    metadata_dict = {}
    for file in file_names:
        metadata_dict[file] = {
            "source_type": "N/A",
        }
    return metadata_dict