dnzblgn commited on
Commit
ac21751
·
verified ·
1 Parent(s): cba7da0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -11
app.py CHANGED
@@ -4,7 +4,7 @@ import faiss
4
  import os
5
  import numpy as np
6
  from sentence_transformers import SentenceTransformer
7
- from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM # Added import
8
 
9
  # Model paths
10
  sent = "dnzblgn/Sentiment-Analysis-Customer-Reviews"
@@ -12,17 +12,23 @@ sarc = "dnzblgn/Sarcasm-Detection-Customer-Reviews"
12
  doc = "dnzblgn/Customer-Reviews-Classification"
13
  embedding_model = SentenceTransformer('multi-qa-mpnet-base-dot-v1')
14
 
 
15
  # Load sentiment, sarcasm, and classification models
16
- sentiment_tokenizer = AutoTokenizer.from_pretrained(sent,use_fast=False)
17
- sentiment_model = AutoModelForSequenceClassification.from_pretrained(sent)
18
- sarcasm_tokenizer = AutoTokenizer.from_pretrained(sarc,use_fast=False)
19
- sarcasm_model = AutoModelForSequenceClassification.from_pretrained(sarc)
20
- classification_tokenizer = AutoTokenizer.from_pretrained(doc,use_fast=False)
21
- classification_model = AutoModelForSequenceClassification.from_pretrained(doc)
22
-
23
- # Load Mistral LLM for conversational answers
24
- mistral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
25
- mistral_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16).eval()
 
 
 
 
 
26
 
27
  # Paths and files
28
  UPLOAD_FOLDER = "uploads"
 
4
  import os
5
  import numpy as np
6
  from sentence_transformers import SentenceTransformer
7
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
8
 
9
  # Model paths
10
  sent = "dnzblgn/Sentiment-Analysis-Customer-Reviews"
 
12
  doc = "dnzblgn/Customer-Reviews-Classification"
13
  embedding_model = SentenceTransformer('multi-qa-mpnet-base-dot-v1')
14
 
15
+
16
  # Load sentiment, sarcasm, and classification models
17
+ sentiment_tokenizer = AutoTokenizer.from_pretrained(sent, use_fast=False, use_auth_token=HF_TOKEN)
18
+ sentiment_model = AutoModelForSequenceClassification.from_pretrained(sent, use_auth_token=HF_TOKEN)
19
+ sarcasm_tokenizer = AutoTokenizer.from_pretrained(sarc, use_fast=False, use_auth_token=HF_TOKEN)
20
+ sarcasm_model = AutoModelForSequenceClassification.from_pretrained(sarc, use_auth_token=HF_TOKEN)
21
+ classification_tokenizer = AutoTokenizer.from_pretrained(doc, use_fast=False, use_auth_token=HF_TOKEN)
22
+ classification_model = AutoModelForSequenceClassification.from_pretrained(doc, use_auth_token=HF_TOKEN)
23
+
24
+ import os
25
+ HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Read token from the environment variable
26
+
27
+ # Use the token in the model loading
28
+ mistral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_auth_token=HF_TOKEN)
29
+ mistral_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, use_auth_token=HF_TOKEN)
30
+
31
+
32
 
33
  # Paths and files
34
  UPLOAD_FOLDER = "uploads"