Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Delete istftnet.py
Browse files- istftnet.py +0 -523
    	
        istftnet.py
    DELETED
    
    | @@ -1,523 +0,0 @@ | |
| 1 | 
            -
            # https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
         | 
| 2 | 
            -
            from scipy.signal import get_window
         | 
| 3 | 
            -
            from torch.nn import Conv1d, ConvTranspose1d
         | 
| 4 | 
            -
            from torch.nn.utils import weight_norm, remove_weight_norm
         | 
| 5 | 
            -
            import numpy as np
         | 
| 6 | 
            -
            import torch
         | 
| 7 | 
            -
            import torch.nn as nn
         | 
| 8 | 
            -
            import torch.nn.functional as F
         | 
| 9 | 
            -
             | 
| 10 | 
            -
            # https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
         | 
| 11 | 
            -
            def init_weights(m, mean=0.0, std=0.01):
         | 
| 12 | 
            -
                classname = m.__class__.__name__
         | 
| 13 | 
            -
                if classname.find("Conv") != -1:
         | 
| 14 | 
            -
                    m.weight.data.normal_(mean, std)
         | 
| 15 | 
            -
             | 
| 16 | 
            -
            def get_padding(kernel_size, dilation=1):
         | 
| 17 | 
            -
                return int((kernel_size*dilation - dilation)/2)
         | 
| 18 | 
            -
             | 
| 19 | 
            -
            LRELU_SLOPE = 0.1
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            class AdaIN1d(nn.Module):
         | 
| 22 | 
            -
                def __init__(self, style_dim, num_features):
         | 
| 23 | 
            -
                    super().__init__()
         | 
| 24 | 
            -
                    self.norm = nn.InstanceNorm1d(num_features, affine=False)
         | 
| 25 | 
            -
                    self.fc = nn.Linear(style_dim, num_features*2)
         | 
| 26 | 
            -
             | 
| 27 | 
            -
                def forward(self, x, s):
         | 
| 28 | 
            -
                    h = self.fc(s)
         | 
| 29 | 
            -
                    h = h.view(h.size(0), h.size(1), 1)
         | 
| 30 | 
            -
                    gamma, beta = torch.chunk(h, chunks=2, dim=1)
         | 
| 31 | 
            -
                    return (1 + gamma) * self.norm(x) + beta
         | 
| 32 | 
            -
             | 
| 33 | 
            -
            class AdaINResBlock1(torch.nn.Module):
         | 
| 34 | 
            -
                def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
         | 
| 35 | 
            -
                    super(AdaINResBlock1, self).__init__()
         | 
| 36 | 
            -
                    self.convs1 = nn.ModuleList([
         | 
| 37 | 
            -
                        weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
         | 
| 38 | 
            -
                                           padding=get_padding(kernel_size, dilation[0]))),
         | 
| 39 | 
            -
                        weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
         | 
| 40 | 
            -
                                           padding=get_padding(kernel_size, dilation[1]))),
         | 
| 41 | 
            -
                        weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
         | 
| 42 | 
            -
                                           padding=get_padding(kernel_size, dilation[2])))
         | 
| 43 | 
            -
                    ])
         | 
| 44 | 
            -
                    self.convs1.apply(init_weights)
         | 
| 45 | 
            -
             | 
| 46 | 
            -
                    self.convs2 = nn.ModuleList([
         | 
| 47 | 
            -
                        weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
         | 
| 48 | 
            -
                                           padding=get_padding(kernel_size, 1))),
         | 
| 49 | 
            -
                        weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
         | 
| 50 | 
            -
                                           padding=get_padding(kernel_size, 1))),
         | 
| 51 | 
            -
                        weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
         | 
| 52 | 
            -
                                           padding=get_padding(kernel_size, 1)))
         | 
| 53 | 
            -
                    ])
         | 
| 54 | 
            -
                    self.convs2.apply(init_weights)
         | 
| 55 | 
            -
                    
         | 
| 56 | 
            -
                    self.adain1 = nn.ModuleList([
         | 
| 57 | 
            -
                        AdaIN1d(style_dim, channels),
         | 
| 58 | 
            -
                        AdaIN1d(style_dim, channels),
         | 
| 59 | 
            -
                        AdaIN1d(style_dim, channels),
         | 
| 60 | 
            -
                    ])
         | 
| 61 | 
            -
                    
         | 
| 62 | 
            -
                    self.adain2 = nn.ModuleList([
         | 
| 63 | 
            -
                        AdaIN1d(style_dim, channels),
         | 
| 64 | 
            -
                        AdaIN1d(style_dim, channels),
         | 
| 65 | 
            -
                        AdaIN1d(style_dim, channels),
         | 
| 66 | 
            -
                    ])
         | 
| 67 | 
            -
                    
         | 
| 68 | 
            -
                    self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
         | 
| 69 | 
            -
                    self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
         | 
| 70 | 
            -
             | 
| 71 | 
            -
             | 
| 72 | 
            -
                def forward(self, x, s):
         | 
| 73 | 
            -
                    for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
         | 
| 74 | 
            -
                        xt = n1(x, s)
         | 
| 75 | 
            -
                        xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2)  # Snake1D
         | 
| 76 | 
            -
                        xt = c1(xt)
         | 
| 77 | 
            -
                        xt = n2(xt, s)
         | 
| 78 | 
            -
                        xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2)  # Snake1D
         | 
| 79 | 
            -
                        xt = c2(xt)
         | 
| 80 | 
            -
                        x = xt + x
         | 
| 81 | 
            -
                    return x
         | 
| 82 | 
            -
             | 
| 83 | 
            -
                def remove_weight_norm(self):
         | 
| 84 | 
            -
                    for l in self.convs1:
         | 
| 85 | 
            -
                        remove_weight_norm(l)
         | 
| 86 | 
            -
                    for l in self.convs2:
         | 
| 87 | 
            -
                        remove_weight_norm(l)
         | 
| 88 | 
            -
                        
         | 
| 89 | 
            -
            class TorchSTFT(torch.nn.Module):
         | 
| 90 | 
            -
                def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
         | 
| 91 | 
            -
                    super().__init__()
         | 
| 92 | 
            -
                    self.filter_length = filter_length
         | 
| 93 | 
            -
                    self.hop_length = hop_length
         | 
| 94 | 
            -
                    self.win_length = win_length
         | 
| 95 | 
            -
                    self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
         | 
| 96 | 
            -
             | 
| 97 | 
            -
                def transform(self, input_data):
         | 
| 98 | 
            -
                    forward_transform = torch.stft(
         | 
| 99 | 
            -
                        input_data,
         | 
| 100 | 
            -
                        self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
         | 
| 101 | 
            -
                        return_complex=True)
         | 
| 102 | 
            -
             | 
| 103 | 
            -
                    return torch.abs(forward_transform), torch.angle(forward_transform)
         | 
| 104 | 
            -
             | 
| 105 | 
            -
                def inverse(self, magnitude, phase):
         | 
| 106 | 
            -
                    inverse_transform = torch.istft(
         | 
| 107 | 
            -
                        magnitude * torch.exp(phase * 1j),
         | 
| 108 | 
            -
                        self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
         | 
| 109 | 
            -
             | 
| 110 | 
            -
                    return inverse_transform.unsqueeze(-2)  # unsqueeze to stay consistent with conv_transpose1d implementation
         | 
| 111 | 
            -
             | 
| 112 | 
            -
                def forward(self, input_data):
         | 
| 113 | 
            -
                    self.magnitude, self.phase = self.transform(input_data)
         | 
| 114 | 
            -
                    reconstruction = self.inverse(self.magnitude, self.phase)
         | 
| 115 | 
            -
                    return reconstruction
         | 
| 116 | 
            -
                
         | 
| 117 | 
            -
            class SineGen(torch.nn.Module):
         | 
| 118 | 
            -
                """ Definition of sine generator
         | 
| 119 | 
            -
                SineGen(samp_rate, harmonic_num = 0,
         | 
| 120 | 
            -
                        sine_amp = 0.1, noise_std = 0.003,
         | 
| 121 | 
            -
                        voiced_threshold = 0,
         | 
| 122 | 
            -
                        flag_for_pulse=False)
         | 
| 123 | 
            -
                samp_rate: sampling rate in Hz
         | 
| 124 | 
            -
                harmonic_num: number of harmonic overtones (default 0)
         | 
| 125 | 
            -
                sine_amp: amplitude of sine-wavefrom (default 0.1)
         | 
| 126 | 
            -
                noise_std: std of Gaussian noise (default 0.003)
         | 
| 127 | 
            -
                voiced_thoreshold: F0 threshold for U/V classification (default 0)
         | 
| 128 | 
            -
                flag_for_pulse: this SinGen is used inside PulseGen (default False)
         | 
| 129 | 
            -
                Note: when flag_for_pulse is True, the first time step of a voiced
         | 
| 130 | 
            -
                    segment is always sin(np.pi) or cos(0)
         | 
| 131 | 
            -
                """
         | 
| 132 | 
            -
             | 
| 133 | 
            -
                def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
         | 
| 134 | 
            -
                             sine_amp=0.1, noise_std=0.003,
         | 
| 135 | 
            -
                             voiced_threshold=0,
         | 
| 136 | 
            -
                             flag_for_pulse=False):
         | 
| 137 | 
            -
                    super(SineGen, self).__init__()
         | 
| 138 | 
            -
                    self.sine_amp = sine_amp
         | 
| 139 | 
            -
                    self.noise_std = noise_std
         | 
| 140 | 
            -
                    self.harmonic_num = harmonic_num
         | 
| 141 | 
            -
                    self.dim = self.harmonic_num + 1
         | 
| 142 | 
            -
                    self.sampling_rate = samp_rate
         | 
| 143 | 
            -
                    self.voiced_threshold = voiced_threshold
         | 
| 144 | 
            -
                    self.flag_for_pulse = flag_for_pulse
         | 
| 145 | 
            -
                    self.upsample_scale = upsample_scale
         | 
| 146 | 
            -
             | 
| 147 | 
            -
                def _f02uv(self, f0):
         | 
| 148 | 
            -
                    # generate uv signal
         | 
| 149 | 
            -
                    uv = (f0 > self.voiced_threshold).type(torch.float32)
         | 
| 150 | 
            -
                    return uv
         | 
| 151 | 
            -
             | 
| 152 | 
            -
                def _f02sine(self, f0_values):
         | 
| 153 | 
            -
                    """ f0_values: (batchsize, length, dim)
         | 
| 154 | 
            -
                        where dim indicates fundamental tone and overtones
         | 
| 155 | 
            -
                    """
         | 
| 156 | 
            -
                    # convert to F0 in rad. The interger part n can be ignored
         | 
| 157 | 
            -
                    # because 2 * np.pi * n doesn't affect phase
         | 
| 158 | 
            -
                    rad_values = (f0_values / self.sampling_rate) % 1
         | 
| 159 | 
            -
             | 
| 160 | 
            -
                    # initial phase noise (no noise for fundamental component)
         | 
| 161 | 
            -
                    rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
         | 
| 162 | 
            -
                                          device=f0_values.device)
         | 
| 163 | 
            -
                    rand_ini[:, 0] = 0
         | 
| 164 | 
            -
                    rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
         | 
| 165 | 
            -
             | 
| 166 | 
            -
                    # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
         | 
| 167 | 
            -
                    if not self.flag_for_pulse:
         | 
| 168 | 
            -
            #             # for normal case
         | 
| 169 | 
            -
             | 
| 170 | 
            -
            #             # To prevent torch.cumsum numerical overflow,
         | 
| 171 | 
            -
            #             # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
         | 
| 172 | 
            -
            #             # Buffer tmp_over_one_idx indicates the time step to add -1.
         | 
| 173 | 
            -
            #             # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
         | 
| 174 | 
            -
            #             tmp_over_one = torch.cumsum(rad_values, 1) % 1
         | 
| 175 | 
            -
            #             tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
         | 
| 176 | 
            -
            #             cumsum_shift = torch.zeros_like(rad_values)
         | 
| 177 | 
            -
            #             cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
         | 
| 178 | 
            -
             | 
| 179 | 
            -
            #             phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
         | 
| 180 | 
            -
                        rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2), 
         | 
| 181 | 
            -
                                                                     scale_factor=1/self.upsample_scale, 
         | 
| 182 | 
            -
                                                                     mode="linear").transpose(1, 2)
         | 
| 183 | 
            -
                
         | 
| 184 | 
            -
            #             tmp_over_one = torch.cumsum(rad_values, 1) % 1
         | 
| 185 | 
            -
            #             tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
         | 
| 186 | 
            -
            #             cumsum_shift = torch.zeros_like(rad_values)
         | 
| 187 | 
            -
            #             cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
         | 
| 188 | 
            -
                
         | 
| 189 | 
            -
                        phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
         | 
| 190 | 
            -
                        phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale, 
         | 
| 191 | 
            -
                                                                scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
         | 
| 192 | 
            -
                        sines = torch.sin(phase)
         | 
| 193 | 
            -
                        
         | 
| 194 | 
            -
                    else:
         | 
| 195 | 
            -
                        # If necessary, make sure that the first time step of every
         | 
| 196 | 
            -
                        # voiced segments is sin(pi) or cos(0)
         | 
| 197 | 
            -
                        # This is used for pulse-train generation
         | 
| 198 | 
            -
             | 
| 199 | 
            -
                        # identify the last time step in unvoiced segments
         | 
| 200 | 
            -
                        uv = self._f02uv(f0_values)
         | 
| 201 | 
            -
                        uv_1 = torch.roll(uv, shifts=-1, dims=1)
         | 
| 202 | 
            -
                        uv_1[:, -1, :] = 1
         | 
| 203 | 
            -
                        u_loc = (uv < 1) * (uv_1 > 0)
         | 
| 204 | 
            -
             | 
| 205 | 
            -
                        # get the instantanouse phase
         | 
| 206 | 
            -
                        tmp_cumsum = torch.cumsum(rad_values, dim=1)
         | 
| 207 | 
            -
                        # different batch needs to be processed differently
         | 
| 208 | 
            -
                        for idx in range(f0_values.shape[0]):
         | 
| 209 | 
            -
                            temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
         | 
| 210 | 
            -
                            temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
         | 
| 211 | 
            -
                            # stores the accumulation of i.phase within
         | 
| 212 | 
            -
                            # each voiced segments
         | 
| 213 | 
            -
                            tmp_cumsum[idx, :, :] = 0
         | 
| 214 | 
            -
                            tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
         | 
| 215 | 
            -
             | 
| 216 | 
            -
                        # rad_values - tmp_cumsum: remove the accumulation of i.phase
         | 
| 217 | 
            -
                        # within the previous voiced segment.
         | 
| 218 | 
            -
                        i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
         | 
| 219 | 
            -
             | 
| 220 | 
            -
                        # get the sines
         | 
| 221 | 
            -
                        sines = torch.cos(i_phase * 2 * np.pi)
         | 
| 222 | 
            -
                    return sines
         | 
| 223 | 
            -
             | 
| 224 | 
            -
                def forward(self, f0):
         | 
| 225 | 
            -
                    """ sine_tensor, uv = forward(f0)
         | 
| 226 | 
            -
                    input F0: tensor(batchsize=1, length, dim=1)
         | 
| 227 | 
            -
                              f0 for unvoiced steps should be 0
         | 
| 228 | 
            -
                    output sine_tensor: tensor(batchsize=1, length, dim)
         | 
| 229 | 
            -
                    output uv: tensor(batchsize=1, length, 1)
         | 
| 230 | 
            -
                    """
         | 
| 231 | 
            -
                    f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
         | 
| 232 | 
            -
                                         device=f0.device)
         | 
| 233 | 
            -
                    # fundamental component
         | 
| 234 | 
            -
                    fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
         | 
| 235 | 
            -
             | 
| 236 | 
            -
                    # generate sine waveforms
         | 
| 237 | 
            -
                    sine_waves = self._f02sine(fn) * self.sine_amp
         | 
| 238 | 
            -
             | 
| 239 | 
            -
                    # generate uv signal
         | 
| 240 | 
            -
                    # uv = torch.ones(f0.shape)
         | 
| 241 | 
            -
                    # uv = uv * (f0 > self.voiced_threshold)
         | 
| 242 | 
            -
                    uv = self._f02uv(f0)
         | 
| 243 | 
            -
             | 
| 244 | 
            -
                    # noise: for unvoiced should be similar to sine_amp
         | 
| 245 | 
            -
                    #        std = self.sine_amp/3 -> max value ~ self.sine_amp
         | 
| 246 | 
            -
                    # .       for voiced regions is self.noise_std
         | 
| 247 | 
            -
                    noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
         | 
| 248 | 
            -
                    noise = noise_amp * torch.randn_like(sine_waves)
         | 
| 249 | 
            -
             | 
| 250 | 
            -
                    # first: set the unvoiced part to 0 by uv
         | 
| 251 | 
            -
                    # then: additive noise
         | 
| 252 | 
            -
                    sine_waves = sine_waves * uv + noise
         | 
| 253 | 
            -
                    return sine_waves, uv, noise
         | 
| 254 | 
            -
             | 
| 255 | 
            -
             | 
| 256 | 
            -
            class SourceModuleHnNSF(torch.nn.Module):
         | 
| 257 | 
            -
                """ SourceModule for hn-nsf
         | 
| 258 | 
            -
                SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
         | 
| 259 | 
            -
                             add_noise_std=0.003, voiced_threshod=0)
         | 
| 260 | 
            -
                sampling_rate: sampling_rate in Hz
         | 
| 261 | 
            -
                harmonic_num: number of harmonic above F0 (default: 0)
         | 
| 262 | 
            -
                sine_amp: amplitude of sine source signal (default: 0.1)
         | 
| 263 | 
            -
                add_noise_std: std of additive Gaussian noise (default: 0.003)
         | 
| 264 | 
            -
                    note that amplitude of noise in unvoiced is decided
         | 
| 265 | 
            -
                    by sine_amp
         | 
| 266 | 
            -
                voiced_threshold: threhold to set U/V given F0 (default: 0)
         | 
| 267 | 
            -
                Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
         | 
| 268 | 
            -
                F0_sampled (batchsize, length, 1)
         | 
| 269 | 
            -
                Sine_source (batchsize, length, 1)
         | 
| 270 | 
            -
                noise_source (batchsize, length 1)
         | 
| 271 | 
            -
                uv (batchsize, length, 1)
         | 
| 272 | 
            -
                """
         | 
| 273 | 
            -
             | 
| 274 | 
            -
                def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
         | 
| 275 | 
            -
                             add_noise_std=0.003, voiced_threshod=0):
         | 
| 276 | 
            -
                    super(SourceModuleHnNSF, self).__init__()
         | 
| 277 | 
            -
             | 
| 278 | 
            -
                    self.sine_amp = sine_amp
         | 
| 279 | 
            -
                    self.noise_std = add_noise_std
         | 
| 280 | 
            -
             | 
| 281 | 
            -
                    # to produce sine waveforms
         | 
| 282 | 
            -
                    self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
         | 
| 283 | 
            -
                                             sine_amp, add_noise_std, voiced_threshod)
         | 
| 284 | 
            -
             | 
| 285 | 
            -
                    # to merge source harmonics into a single excitation
         | 
| 286 | 
            -
                    self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
         | 
| 287 | 
            -
                    self.l_tanh = torch.nn.Tanh()
         | 
| 288 | 
            -
             | 
| 289 | 
            -
                def forward(self, x):
         | 
| 290 | 
            -
                    """
         | 
| 291 | 
            -
                    Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
         | 
| 292 | 
            -
                    F0_sampled (batchsize, length, 1)
         | 
| 293 | 
            -
                    Sine_source (batchsize, length, 1)
         | 
| 294 | 
            -
                    noise_source (batchsize, length 1)
         | 
| 295 | 
            -
                    """
         | 
| 296 | 
            -
                    # source for harmonic branch
         | 
| 297 | 
            -
                    with torch.no_grad():
         | 
| 298 | 
            -
                        sine_wavs, uv, _ = self.l_sin_gen(x)
         | 
| 299 | 
            -
                    sine_merge = self.l_tanh(self.l_linear(sine_wavs))
         | 
| 300 | 
            -
             | 
| 301 | 
            -
                    # source for noise branch, in the same shape as uv
         | 
| 302 | 
            -
                    noise = torch.randn_like(uv) * self.sine_amp / 3
         | 
| 303 | 
            -
                    return sine_merge, noise, uv
         | 
| 304 | 
            -
            def padDiff(x):
         | 
| 305 | 
            -
                return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
         | 
| 306 | 
            -
             | 
| 307 | 
            -
                
         | 
| 308 | 
            -
            class Generator(torch.nn.Module):
         | 
| 309 | 
            -
                def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
         | 
| 310 | 
            -
                    super(Generator, self).__init__()
         | 
| 311 | 
            -
             | 
| 312 | 
            -
                    self.num_kernels = len(resblock_kernel_sizes)
         | 
| 313 | 
            -
                    self.num_upsamples = len(upsample_rates)
         | 
| 314 | 
            -
                    resblock = AdaINResBlock1
         | 
| 315 | 
            -
             | 
| 316 | 
            -
                    self.m_source = SourceModuleHnNSF(
         | 
| 317 | 
            -
                                sampling_rate=24000,
         | 
| 318 | 
            -
                                upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
         | 
| 319 | 
            -
                                harmonic_num=8, voiced_threshod=10)
         | 
| 320 | 
            -
                    self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
         | 
| 321 | 
            -
                    self.noise_convs = nn.ModuleList()
         | 
| 322 | 
            -
                    self.noise_res = nn.ModuleList()
         | 
| 323 | 
            -
                    
         | 
| 324 | 
            -
                    self.ups = nn.ModuleList()
         | 
| 325 | 
            -
                    for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
         | 
| 326 | 
            -
                        self.ups.append(weight_norm(
         | 
| 327 | 
            -
                            ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
         | 
| 328 | 
            -
                                            k, u, padding=(k-u)//2)))
         | 
| 329 | 
            -
             | 
| 330 | 
            -
                    self.resblocks = nn.ModuleList()
         | 
| 331 | 
            -
                    for i in range(len(self.ups)):
         | 
| 332 | 
            -
                        ch = upsample_initial_channel//(2**(i+1))
         | 
| 333 | 
            -
                        for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
         | 
| 334 | 
            -
                            self.resblocks.append(resblock(ch, k, d, style_dim))
         | 
| 335 | 
            -
                            
         | 
| 336 | 
            -
                        c_cur = upsample_initial_channel // (2 ** (i + 1))
         | 
| 337 | 
            -
                        
         | 
| 338 | 
            -
                        if i + 1 < len(upsample_rates):  #
         | 
| 339 | 
            -
                            stride_f0 = np.prod(upsample_rates[i + 1:])
         | 
| 340 | 
            -
                            self.noise_convs.append(Conv1d(
         | 
| 341 | 
            -
                                gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
         | 
| 342 | 
            -
                            self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
         | 
| 343 | 
            -
                        else:
         | 
| 344 | 
            -
                            self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
         | 
| 345 | 
            -
                            self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
         | 
| 346 | 
            -
                            
         | 
| 347 | 
            -
                            
         | 
| 348 | 
            -
                    self.post_n_fft = gen_istft_n_fft
         | 
| 349 | 
            -
                    self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
         | 
| 350 | 
            -
                    self.ups.apply(init_weights)
         | 
| 351 | 
            -
                    self.conv_post.apply(init_weights)
         | 
| 352 | 
            -
                    self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
         | 
| 353 | 
            -
                    self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
         | 
| 354 | 
            -
                    
         | 
| 355 | 
            -
                    
         | 
| 356 | 
            -
                def forward(self, x, s, f0):
         | 
| 357 | 
            -
                    with torch.no_grad():
         | 
| 358 | 
            -
                        f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2)  # bs,n,t
         | 
| 359 | 
            -
             | 
| 360 | 
            -
                        har_source, noi_source, uv = self.m_source(f0)
         | 
| 361 | 
            -
                        har_source = har_source.transpose(1, 2).squeeze(1)
         | 
| 362 | 
            -
                        har_spec, har_phase = self.stft.transform(har_source)
         | 
| 363 | 
            -
                        har = torch.cat([har_spec, har_phase], dim=1)
         | 
| 364 | 
            -
                    
         | 
| 365 | 
            -
                    for i in range(self.num_upsamples):
         | 
| 366 | 
            -
                        x = F.leaky_relu(x, LRELU_SLOPE)
         | 
| 367 | 
            -
                        x_source = self.noise_convs[i](har)
         | 
| 368 | 
            -
                        x_source = self.noise_res[i](x_source, s)
         | 
| 369 | 
            -
             | 
| 370 | 
            -
                        x = self.ups[i](x)
         | 
| 371 | 
            -
                        if i == self.num_upsamples - 1:
         | 
| 372 | 
            -
                            x = self.reflection_pad(x)
         | 
| 373 | 
            -
             | 
| 374 | 
            -
                        x = x + x_source
         | 
| 375 | 
            -
                        xs = None
         | 
| 376 | 
            -
                        for j in range(self.num_kernels):
         | 
| 377 | 
            -
                            if xs is None:
         | 
| 378 | 
            -
                                xs = self.resblocks[i*self.num_kernels+j](x, s)
         | 
| 379 | 
            -
                            else:
         | 
| 380 | 
            -
                                xs += self.resblocks[i*self.num_kernels+j](x, s)
         | 
| 381 | 
            -
                        x = xs / self.num_kernels
         | 
| 382 | 
            -
                    x = F.leaky_relu(x)
         | 
| 383 | 
            -
                    x = self.conv_post(x)
         | 
| 384 | 
            -
                    spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
         | 
| 385 | 
            -
                    phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
         | 
| 386 | 
            -
                    return self.stft.inverse(spec, phase)
         | 
| 387 | 
            -
                
         | 
| 388 | 
            -
                def fw_phase(self, x, s):
         | 
| 389 | 
            -
                    for i in range(self.num_upsamples):
         | 
| 390 | 
            -
                        x = F.leaky_relu(x, LRELU_SLOPE)
         | 
| 391 | 
            -
                        x = self.ups[i](x)
         | 
| 392 | 
            -
                        xs = None
         | 
| 393 | 
            -
                        for j in range(self.num_kernels):
         | 
| 394 | 
            -
                            if xs is None:
         | 
| 395 | 
            -
                                xs = self.resblocks[i*self.num_kernels+j](x, s)
         | 
| 396 | 
            -
                            else:
         | 
| 397 | 
            -
                                xs += self.resblocks[i*self.num_kernels+j](x, s)
         | 
| 398 | 
            -
                        x = xs / self.num_kernels
         | 
| 399 | 
            -
                    x = F.leaky_relu(x)
         | 
| 400 | 
            -
                    x = self.reflection_pad(x)
         | 
| 401 | 
            -
                    x = self.conv_post(x)
         | 
| 402 | 
            -
                    spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
         | 
| 403 | 
            -
                    phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
         | 
| 404 | 
            -
                    return spec, phase
         | 
| 405 | 
            -
             | 
| 406 | 
            -
                def remove_weight_norm(self):
         | 
| 407 | 
            -
                    print('Removing weight norm...')
         | 
| 408 | 
            -
                    for l in self.ups:
         | 
| 409 | 
            -
                        remove_weight_norm(l)
         | 
| 410 | 
            -
                    for l in self.resblocks:
         | 
| 411 | 
            -
                        l.remove_weight_norm()
         | 
| 412 | 
            -
                    remove_weight_norm(self.conv_pre)
         | 
| 413 | 
            -
                    remove_weight_norm(self.conv_post)
         | 
| 414 | 
            -
             | 
| 415 | 
            -
                    
         | 
| 416 | 
            -
            class AdainResBlk1d(nn.Module):
         | 
| 417 | 
            -
                def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
         | 
| 418 | 
            -
                             upsample='none', dropout_p=0.0):
         | 
| 419 | 
            -
                    super().__init__()
         | 
| 420 | 
            -
                    self.actv = actv
         | 
| 421 | 
            -
                    self.upsample_type = upsample
         | 
| 422 | 
            -
                    self.upsample = UpSample1d(upsample)
         | 
| 423 | 
            -
                    self.learned_sc = dim_in != dim_out
         | 
| 424 | 
            -
                    self._build_weights(dim_in, dim_out, style_dim)
         | 
| 425 | 
            -
                    self.dropout = nn.Dropout(dropout_p)
         | 
| 426 | 
            -
                    
         | 
| 427 | 
            -
                    if upsample == 'none':
         | 
| 428 | 
            -
                        self.pool = nn.Identity()
         | 
| 429 | 
            -
                    else:
         | 
| 430 | 
            -
                        self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
         | 
| 431 | 
            -
                    
         | 
| 432 | 
            -
                    
         | 
| 433 | 
            -
                def _build_weights(self, dim_in, dim_out, style_dim):
         | 
| 434 | 
            -
                    self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
         | 
| 435 | 
            -
                    self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
         | 
| 436 | 
            -
                    self.norm1 = AdaIN1d(style_dim, dim_in)
         | 
| 437 | 
            -
                    self.norm2 = AdaIN1d(style_dim, dim_out)
         | 
| 438 | 
            -
                    if self.learned_sc:
         | 
| 439 | 
            -
                        self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
         | 
| 440 | 
            -
             | 
| 441 | 
            -
                def _shortcut(self, x):
         | 
| 442 | 
            -
                    x = self.upsample(x)
         | 
| 443 | 
            -
                    if self.learned_sc:
         | 
| 444 | 
            -
                        x = self.conv1x1(x)
         | 
| 445 | 
            -
                    return x
         | 
| 446 | 
            -
             | 
| 447 | 
            -
                def _residual(self, x, s):
         | 
| 448 | 
            -
                    x = self.norm1(x, s)
         | 
| 449 | 
            -
                    x = self.actv(x)
         | 
| 450 | 
            -
                    x = self.pool(x)
         | 
| 451 | 
            -
                    x = self.conv1(self.dropout(x))
         | 
| 452 | 
            -
                    x = self.norm2(x, s)
         | 
| 453 | 
            -
                    x = self.actv(x)
         | 
| 454 | 
            -
                    x = self.conv2(self.dropout(x))
         | 
| 455 | 
            -
                    return x
         | 
| 456 | 
            -
             | 
| 457 | 
            -
                def forward(self, x, s):
         | 
| 458 | 
            -
                    out = self._residual(x, s)
         | 
| 459 | 
            -
                    out = (out + self._shortcut(x)) / np.sqrt(2)
         | 
| 460 | 
            -
                    return out
         | 
| 461 | 
            -
                
         | 
| 462 | 
            -
            class UpSample1d(nn.Module):
         | 
| 463 | 
            -
                def __init__(self, layer_type):
         | 
| 464 | 
            -
                    super().__init__()
         | 
| 465 | 
            -
                    self.layer_type = layer_type
         | 
| 466 | 
            -
             | 
| 467 | 
            -
                def forward(self, x):
         | 
| 468 | 
            -
                    if self.layer_type == 'none':
         | 
| 469 | 
            -
                        return x
         | 
| 470 | 
            -
                    else:
         | 
| 471 | 
            -
                        return F.interpolate(x, scale_factor=2, mode='nearest')
         | 
| 472 | 
            -
             | 
| 473 | 
            -
            class Decoder(nn.Module):
         | 
| 474 | 
            -
                def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80, 
         | 
| 475 | 
            -
                            resblock_kernel_sizes = [3,7,11],
         | 
| 476 | 
            -
                            upsample_rates = [10, 6],
         | 
| 477 | 
            -
                            upsample_initial_channel=512,
         | 
| 478 | 
            -
                            resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
         | 
| 479 | 
            -
                            upsample_kernel_sizes=[20, 12], 
         | 
| 480 | 
            -
                            gen_istft_n_fft=20, gen_istft_hop_size=5):
         | 
| 481 | 
            -
                    super().__init__()
         | 
| 482 | 
            -
                    
         | 
| 483 | 
            -
                    self.decode = nn.ModuleList()
         | 
| 484 | 
            -
                    
         | 
| 485 | 
            -
                    self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
         | 
| 486 | 
            -
                    
         | 
| 487 | 
            -
                    self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
         | 
| 488 | 
            -
                    self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
         | 
| 489 | 
            -
                    self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
         | 
| 490 | 
            -
                    self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
         | 
| 491 | 
            -
             | 
| 492 | 
            -
                    self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
         | 
| 493 | 
            -
                    
         | 
| 494 | 
            -
                    self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
         | 
| 495 | 
            -
                    
         | 
| 496 | 
            -
                    self.asr_res = nn.Sequential(
         | 
| 497 | 
            -
                        weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
         | 
| 498 | 
            -
                    )
         | 
| 499 | 
            -
                    
         | 
| 500 | 
            -
                    
         | 
| 501 | 
            -
                    self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, 
         | 
| 502 | 
            -
                                               upsample_initial_channel, resblock_dilation_sizes, 
         | 
| 503 | 
            -
                                               upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
         | 
| 504 | 
            -
                    
         | 
| 505 | 
            -
                def forward(self, asr, F0_curve, N, s):
         | 
| 506 | 
            -
                    F0 = self.F0_conv(F0_curve.unsqueeze(1))
         | 
| 507 | 
            -
                    N = self.N_conv(N.unsqueeze(1))
         | 
| 508 | 
            -
                    
         | 
| 509 | 
            -
                    x = torch.cat([asr, F0, N], axis=1)
         | 
| 510 | 
            -
                    x = self.encode(x, s)
         | 
| 511 | 
            -
                    
         | 
| 512 | 
            -
                    asr_res = self.asr_res(asr)
         | 
| 513 | 
            -
                    
         | 
| 514 | 
            -
                    res = True
         | 
| 515 | 
            -
                    for block in self.decode:
         | 
| 516 | 
            -
                        if res:
         | 
| 517 | 
            -
                            x = torch.cat([x, asr_res, F0, N], axis=1)
         | 
| 518 | 
            -
                        x = block(x, s)
         | 
| 519 | 
            -
                        if block.upsample_type != "none":
         | 
| 520 | 
            -
                            res = False
         | 
| 521 | 
            -
                            
         | 
| 522 | 
            -
                    x = self.generator(x, s, F0_curve)
         | 
| 523 | 
            -
                    return x
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
