Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -15,15 +15,15 @@ nlp_a = pipeline('question-answering', model='mrm8488/distill-bert-base-spanish- | |
| 15 | 
             
                ))
         | 
| 16 | 
             
            def generate_summary(text):
         | 
| 17 | 
             
               inputs = tokenizer([text], padding="max_length", truncation=True, max_length=64, return_tensors="pt")
         | 
| 18 | 
            -
               input_ids = inputs.input_ids | 
| 19 | 
            -
               attention_mask = inputs.attention_mask | 
| 20 | 
             
               output = model.generate(input_ids, attention_mask=attention_mask)
         | 
| 21 | 
             
               return tokenizer.decode(output[0], skip_special_tokens=True)
         | 
| 22 | 
             
            def generate_simple_text(data):
         | 
| 23 | 
             
                outputs = []
         | 
| 24 | 
             
                for text in data.split("."):
         | 
| 25 | 
             
                    inputs = tokenizer_s(text, max_length=1024, padding=True, truncation=True, return_tensors='pt')
         | 
| 26 | 
            -
                    output = model_s.generate(inputs['input_ids'] | 
| 27 | 
             
                    outputs.append(['\n'.join([tokenizer_s.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in output])])
         | 
| 28 | 
             
                return outputs
         | 
| 29 | 
             
            def generate_questions(data):
         | 
|  | |
| 15 | 
             
                ))
         | 
| 16 | 
             
            def generate_summary(text):
         | 
| 17 | 
             
               inputs = tokenizer([text], padding="max_length", truncation=True, max_length=64, return_tensors="pt")
         | 
| 18 | 
            +
               input_ids = inputs.input_ids
         | 
| 19 | 
            +
               attention_mask = inputs.attention_mask
         | 
| 20 | 
             
               output = model.generate(input_ids, attention_mask=attention_mask)
         | 
| 21 | 
             
               return tokenizer.decode(output[0], skip_special_tokens=True)
         | 
| 22 | 
             
            def generate_simple_text(data):
         | 
| 23 | 
             
                outputs = []
         | 
| 24 | 
             
                for text in data.split("."):
         | 
| 25 | 
             
                    inputs = tokenizer_s(text, max_length=1024, padding=True, truncation=True, return_tensors='pt')
         | 
| 26 | 
            +
                    output = model_s.generate(inputs['input_ids'], max_length=100)
         | 
| 27 | 
             
                    outputs.append(['\n'.join([tokenizer_s.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in output])])
         | 
| 28 | 
             
                return outputs
         | 
| 29 | 
             
            def generate_questions(data):
         |