Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						5f111f9
	
1
								Parent(s):
							
							e481d34
								
Ran black
Browse files
    	
        test.py
    CHANGED
    
    | @@ -12,31 +12,32 @@ from langchain.chains import LLMChain, SequentialChain | |
| 12 | 
             
            llm = ChatOpenAI(temperature=0.0, openai_api_key=os.environ["OPENAI"])
         | 
| 13 |  | 
| 14 |  | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
             
            def generate_skills() -> list:
         | 
| 18 | 
            -
             | 
| 19 | 
             
                template_generate_skills = """
         | 
| 20 | 
             
                Can you generate me a list of skills you would need to be successfully employed in a Data Scientist role?
         | 
| 21 | 
             
                Return 10 skills as a JSON list.
         | 
| 22 | 
             
                """
         | 
| 23 |  | 
| 24 | 
            -
                prompt_generate_skills = ChatPromptTemplate.from_template( | 
| 25 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 26 |  | 
| 27 | 
             
                generate_skills_chain = SequentialChain(
         | 
| 28 | 
             
                    chains=[role_skills],
         | 
| 29 | 
             
                    input_variables=[],
         | 
| 30 | 
             
                    output_variables=["role_skills"],
         | 
| 31 | 
            -
                    verbose=False
         | 
| 32 | 
             
                )
         | 
| 33 |  | 
| 34 | 
             
                result = generate_skills_chain({})
         | 
| 35 | 
             
                result_array = json.loads(result["role_skills"])["skills"]
         | 
| 36 | 
             
                return result_array
         | 
| 37 |  | 
| 38 | 
            -
            def generate_resume(skills: list) -> str:
         | 
| 39 |  | 
|  | |
| 40 | 
             
                template_generate_resume = """
         | 
| 41 | 
             
                Given the following list of skills as an array delimited by three backticks, generate a resume of a data scientist with 3 years of experience.
         | 
| 42 | 
             
                Make sure to include a section "skills" in the resume.
         | 
| @@ -46,22 +47,24 @@ def generate_resume(skills: list) -> str: | |
| 46 | 
             
                ```
         | 
| 47 | 
             
                """
         | 
| 48 |  | 
| 49 | 
            -
                prompt_generate_resume = ChatPromptTemplate.from_template( | 
|  | |
|  | |
| 50 | 
             
                resume = LLMChain(llm=llm, prompt=prompt_generate_resume, output_key="resume")
         | 
| 51 |  | 
| 52 | 
             
                generate_resume_chain = SequentialChain(
         | 
| 53 | 
             
                    chains=[resume],
         | 
| 54 | 
             
                    input_variables=["skills"],
         | 
| 55 | 
             
                    output_variables=["resume"],
         | 
| 56 | 
            -
                    verbose=False
         | 
| 57 | 
             
                )
         | 
| 58 |  | 
| 59 | 
             
                result = generate_resume_chain({"skills": skills})
         | 
| 60 |  | 
| 61 | 
             
                return result
         | 
| 62 |  | 
|  | |
| 63 | 
             
            def retrieve_skills(resume: str) -> str:
         | 
| 64 | 
            -
                
         | 
| 65 | 
             
                template_retrieve_skills = """
         | 
| 66 | 
             
                Given the following resume delimited by three backticks, retrieve the skills this data scientist possesses.
         | 
| 67 | 
             
                Return them as a JSON list.
         | 
| @@ -71,14 +74,16 @@ def retrieve_skills(resume: str) -> str: | |
| 71 | 
             
                ```
         | 
| 72 | 
             
                """
         | 
| 73 |  | 
| 74 | 
            -
                prompt_retrieve_skills = ChatPromptTemplate.from_template( | 
|  | |
|  | |
| 75 | 
             
                skills = LLMChain(llm=llm, prompt=prompt_retrieve_skills, output_key="skills")
         | 
| 76 |  | 
| 77 | 
             
                retrieve_skills_chain = SequentialChain(
         | 
| 78 | 
             
                    chains=[skills],
         | 
| 79 | 
             
                    input_variables=["resume"],
         | 
| 80 | 
             
                    output_variables=["skills"],
         | 
| 81 | 
            -
                    verbose=False
         | 
| 82 | 
             
                )
         | 
| 83 |  | 
| 84 | 
             
                result = retrieve_skills_chain({"resume": resume})
         | 
| @@ -86,10 +91,12 @@ def retrieve_skills(resume: str) -> str: | |
| 86 |  | 
| 87 | 
             
                return result_array
         | 
| 88 |  | 
| 89 | 
            -
             | 
|  | |
| 90 | 
             
                intersection_list = [value for value in predicted_values if value in true_values]
         | 
| 91 | 
             
                print(intersection_list)
         | 
| 92 | 
            -
                return len(intersection_list)/len(true_values)
         | 
|  | |
| 93 |  | 
| 94 | 
             
            if __name__ == "__main__":
         | 
| 95 | 
             
                role_skills = generate_skills()
         | 
| @@ -107,16 +114,16 @@ if __name__ == "__main__": | |
| 107 | 
             
            #         's3',
         | 
| 108 | 
             
            #         region_name='eu-west-1'
         | 
| 109 | 
             
            #     )
         | 
| 110 | 
            -
             | 
| 111 | 
            -
             | 
| 112 | 
            -
             | 
| 113 | 
            -
             | 
| 114 | 
            -
             | 
| 115 | 
            -
             | 
| 116 | 
            -
             | 
| 117 | 
            -
             | 
| 118 | 
            -
             | 
| 119 | 
            -
             | 
| 120 | 
             
            #     s3_uri = urlparse("s3://ausy-datalake-drift-nonprod/resume-matcher/raw/resume-dataset.csv", allow_fragments=False).geturl()
         | 
| 121 | 
             
            #     resumes_list = pd.read_csv(s3_uri, header=None, encoding='utf-8')[0].tolist()
         | 
| 122 |  | 
| @@ -125,9 +132,9 @@ if __name__ == "__main__": | |
| 125 | 
             
            # def get_skills(resumes: str) -> list:
         | 
| 126 |  | 
| 127 | 
             
            #     template_resumes_get_skills = """
         | 
| 128 | 
            -
            #     Given the following string, delimited by <RESUMES> and </RESUMES> which contains resumes which are not properly formatted, categorize the resumes based on domain. | 
| 129 | 
             
            #     For each domain list the skills of the resumes that are part of that domain.
         | 
| 130 | 
            -
             | 
| 131 | 
             
            #     Create a JSON object where they keys are the domains and the values are a list containing the skills.
         | 
| 132 |  | 
| 133 | 
             
            #     Return that JSON object only.
         | 
| @@ -155,5 +162,5 @@ if __name__ == "__main__": | |
| 155 | 
             
            # if __name__ == "__main__":
         | 
| 156 | 
             
            #     resumes = get_resumes()
         | 
| 157 | 
             
            #     print(resumes)
         | 
| 158 | 
            -
             | 
| 159 | 
            -
             | 
|  | |
| 12 | 
             
            llm = ChatOpenAI(temperature=0.0, openai_api_key=os.environ["OPENAI"])
         | 
| 13 |  | 
| 14 |  | 
|  | |
|  | |
| 15 | 
             
            def generate_skills() -> list:
         | 
|  | |
| 16 | 
             
                template_generate_skills = """
         | 
| 17 | 
             
                Can you generate me a list of skills you would need to be successfully employed in a Data Scientist role?
         | 
| 18 | 
             
                Return 10 skills as a JSON list.
         | 
| 19 | 
             
                """
         | 
| 20 |  | 
| 21 | 
            +
                prompt_generate_skills = ChatPromptTemplate.from_template(
         | 
| 22 | 
            +
                    template=template_generate_skills
         | 
| 23 | 
            +
                )
         | 
| 24 | 
            +
                role_skills = LLMChain(
         | 
| 25 | 
            +
                    llm=llm, prompt=prompt_generate_skills, output_key="role_skills"
         | 
| 26 | 
            +
                )
         | 
| 27 |  | 
| 28 | 
             
                generate_skills_chain = SequentialChain(
         | 
| 29 | 
             
                    chains=[role_skills],
         | 
| 30 | 
             
                    input_variables=[],
         | 
| 31 | 
             
                    output_variables=["role_skills"],
         | 
| 32 | 
            +
                    verbose=False,
         | 
| 33 | 
             
                )
         | 
| 34 |  | 
| 35 | 
             
                result = generate_skills_chain({})
         | 
| 36 | 
             
                result_array = json.loads(result["role_skills"])["skills"]
         | 
| 37 | 
             
                return result_array
         | 
| 38 |  | 
|  | |
| 39 |  | 
| 40 | 
            +
            def generate_resume(skills: list) -> str:
         | 
| 41 | 
             
                template_generate_resume = """
         | 
| 42 | 
             
                Given the following list of skills as an array delimited by three backticks, generate a resume of a data scientist with 3 years of experience.
         | 
| 43 | 
             
                Make sure to include a section "skills" in the resume.
         | 
|  | |
| 47 | 
             
                ```
         | 
| 48 | 
             
                """
         | 
| 49 |  | 
| 50 | 
            +
                prompt_generate_resume = ChatPromptTemplate.from_template(
         | 
| 51 | 
            +
                    template=template_generate_resume
         | 
| 52 | 
            +
                )
         | 
| 53 | 
             
                resume = LLMChain(llm=llm, prompt=prompt_generate_resume, output_key="resume")
         | 
| 54 |  | 
| 55 | 
             
                generate_resume_chain = SequentialChain(
         | 
| 56 | 
             
                    chains=[resume],
         | 
| 57 | 
             
                    input_variables=["skills"],
         | 
| 58 | 
             
                    output_variables=["resume"],
         | 
| 59 | 
            +
                    verbose=False,
         | 
| 60 | 
             
                )
         | 
| 61 |  | 
| 62 | 
             
                result = generate_resume_chain({"skills": skills})
         | 
| 63 |  | 
| 64 | 
             
                return result
         | 
| 65 |  | 
| 66 | 
            +
             | 
| 67 | 
             
            def retrieve_skills(resume: str) -> str:
         | 
|  | |
| 68 | 
             
                template_retrieve_skills = """
         | 
| 69 | 
             
                Given the following resume delimited by three backticks, retrieve the skills this data scientist possesses.
         | 
| 70 | 
             
                Return them as a JSON list.
         | 
|  | |
| 74 | 
             
                ```
         | 
| 75 | 
             
                """
         | 
| 76 |  | 
| 77 | 
            +
                prompt_retrieve_skills = ChatPromptTemplate.from_template(
         | 
| 78 | 
            +
                    template=template_retrieve_skills
         | 
| 79 | 
            +
                )
         | 
| 80 | 
             
                skills = LLMChain(llm=llm, prompt=prompt_retrieve_skills, output_key="skills")
         | 
| 81 |  | 
| 82 | 
             
                retrieve_skills_chain = SequentialChain(
         | 
| 83 | 
             
                    chains=[skills],
         | 
| 84 | 
             
                    input_variables=["resume"],
         | 
| 85 | 
             
                    output_variables=["skills"],
         | 
| 86 | 
            +
                    verbose=False,
         | 
| 87 | 
             
                )
         | 
| 88 |  | 
| 89 | 
             
                result = retrieve_skills_chain({"resume": resume})
         | 
|  | |
| 91 |  | 
| 92 | 
             
                return result_array
         | 
| 93 |  | 
| 94 | 
            +
             | 
| 95 | 
            +
            def get_score(true_values: list, predicted_values: list) -> float:
         | 
| 96 | 
             
                intersection_list = [value for value in predicted_values if value in true_values]
         | 
| 97 | 
             
                print(intersection_list)
         | 
| 98 | 
            +
                return len(intersection_list) / len(true_values)
         | 
| 99 | 
            +
             | 
| 100 |  | 
| 101 | 
             
            if __name__ == "__main__":
         | 
| 102 | 
             
                role_skills = generate_skills()
         | 
|  | |
| 114 | 
             
            #         's3',
         | 
| 115 | 
             
            #         region_name='eu-west-1'
         | 
| 116 | 
             
            #     )
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            # resumes = s3.get_object(Bucket='ausy-datalake-drift-nonprod', Key='resume-matcher/raw/resume-dataset.csv')
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            # resumes_list = resumes['Body'].read().decode('utf-8').splitlines()
         | 
| 121 | 
            +
            # resumes_list = resumes['Body'].read().decode('utf-8').splitlines()
         | 
| 122 | 
            +
            # resumes_list = str(resumes_list).replace('. ', '.\n')
         | 
| 123 | 
            +
            # resumes_list = str(resumes_list).replace('â¢', '\n - ')
         | 
| 124 | 
            +
            # resumes_list = [s.replace('. ', '.\n') for s in resumes_list]
         | 
| 125 | 
            +
            # resumes_list = [s.replace('â¢', '\n - ') for s in resumes_list]
         | 
| 126 | 
            +
            # resume_string =''.join(resumes_list)
         | 
| 127 | 
             
            #     s3_uri = urlparse("s3://ausy-datalake-drift-nonprod/resume-matcher/raw/resume-dataset.csv", allow_fragments=False).geturl()
         | 
| 128 | 
             
            #     resumes_list = pd.read_csv(s3_uri, header=None, encoding='utf-8')[0].tolist()
         | 
| 129 |  | 
|  | |
| 132 | 
             
            # def get_skills(resumes: str) -> list:
         | 
| 133 |  | 
| 134 | 
             
            #     template_resumes_get_skills = """
         | 
| 135 | 
            +
            #     Given the following string, delimited by <RESUMES> and </RESUMES> which contains resumes which are not properly formatted, categorize the resumes based on domain.
         | 
| 136 | 
             
            #     For each domain list the skills of the resumes that are part of that domain.
         | 
| 137 | 
            +
             | 
| 138 | 
             
            #     Create a JSON object where they keys are the domains and the values are a list containing the skills.
         | 
| 139 |  | 
| 140 | 
             
            #     Return that JSON object only.
         | 
|  | |
| 162 | 
             
            # if __name__ == "__main__":
         | 
| 163 | 
             
            #     resumes = get_resumes()
         | 
| 164 | 
             
            #     print(resumes)
         | 
| 165 | 
            +
            # for x in resumes:
         | 
| 166 | 
            +
            #     get_skills(x)
         | 
