Spaces:
Runtime error
Runtime error
Commit
·
5f111f9
1
Parent(s):
e481d34
Ran black
Browse files
test.py
CHANGED
|
@@ -12,31 +12,32 @@ from langchain.chains import LLMChain, SequentialChain
|
|
| 12 |
llm = ChatOpenAI(temperature=0.0, openai_api_key=os.environ["OPENAI"])
|
| 13 |
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
def generate_skills() -> list:
|
| 18 |
-
|
| 19 |
template_generate_skills = """
|
| 20 |
Can you generate me a list of skills you would need to be successfully employed in a Data Scientist role?
|
| 21 |
Return 10 skills as a JSON list.
|
| 22 |
"""
|
| 23 |
|
| 24 |
-
prompt_generate_skills = ChatPromptTemplate.from_template(
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
generate_skills_chain = SequentialChain(
|
| 28 |
chains=[role_skills],
|
| 29 |
input_variables=[],
|
| 30 |
output_variables=["role_skills"],
|
| 31 |
-
verbose=False
|
| 32 |
)
|
| 33 |
|
| 34 |
result = generate_skills_chain({})
|
| 35 |
result_array = json.loads(result["role_skills"])["skills"]
|
| 36 |
return result_array
|
| 37 |
|
| 38 |
-
def generate_resume(skills: list) -> str:
|
| 39 |
|
|
|
|
| 40 |
template_generate_resume = """
|
| 41 |
Given the following list of skills as an array delimited by three backticks, generate a resume of a data scientist with 3 years of experience.
|
| 42 |
Make sure to include a section "skills" in the resume.
|
|
@@ -46,22 +47,24 @@ def generate_resume(skills: list) -> str:
|
|
| 46 |
```
|
| 47 |
"""
|
| 48 |
|
| 49 |
-
prompt_generate_resume = ChatPromptTemplate.from_template(
|
|
|
|
|
|
|
| 50 |
resume = LLMChain(llm=llm, prompt=prompt_generate_resume, output_key="resume")
|
| 51 |
|
| 52 |
generate_resume_chain = SequentialChain(
|
| 53 |
chains=[resume],
|
| 54 |
input_variables=["skills"],
|
| 55 |
output_variables=["resume"],
|
| 56 |
-
verbose=False
|
| 57 |
)
|
| 58 |
|
| 59 |
result = generate_resume_chain({"skills": skills})
|
| 60 |
|
| 61 |
return result
|
| 62 |
|
|
|
|
| 63 |
def retrieve_skills(resume: str) -> str:
|
| 64 |
-
|
| 65 |
template_retrieve_skills = """
|
| 66 |
Given the following resume delimited by three backticks, retrieve the skills this data scientist possesses.
|
| 67 |
Return them as a JSON list.
|
|
@@ -71,14 +74,16 @@ def retrieve_skills(resume: str) -> str:
|
|
| 71 |
```
|
| 72 |
"""
|
| 73 |
|
| 74 |
-
prompt_retrieve_skills = ChatPromptTemplate.from_template(
|
|
|
|
|
|
|
| 75 |
skills = LLMChain(llm=llm, prompt=prompt_retrieve_skills, output_key="skills")
|
| 76 |
|
| 77 |
retrieve_skills_chain = SequentialChain(
|
| 78 |
chains=[skills],
|
| 79 |
input_variables=["resume"],
|
| 80 |
output_variables=["skills"],
|
| 81 |
-
verbose=False
|
| 82 |
)
|
| 83 |
|
| 84 |
result = retrieve_skills_chain({"resume": resume})
|
|
@@ -86,10 +91,12 @@ def retrieve_skills(resume: str) -> str:
|
|
| 86 |
|
| 87 |
return result_array
|
| 88 |
|
| 89 |
-
|
|
|
|
| 90 |
intersection_list = [value for value in predicted_values if value in true_values]
|
| 91 |
print(intersection_list)
|
| 92 |
-
return len(intersection_list)/len(true_values)
|
|
|
|
| 93 |
|
| 94 |
if __name__ == "__main__":
|
| 95 |
role_skills = generate_skills()
|
|
@@ -107,16 +114,16 @@ if __name__ == "__main__":
|
|
| 107 |
# 's3',
|
| 108 |
# region_name='eu-west-1'
|
| 109 |
# )
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
# s3_uri = urlparse("s3://ausy-datalake-drift-nonprod/resume-matcher/raw/resume-dataset.csv", allow_fragments=False).geturl()
|
| 121 |
# resumes_list = pd.read_csv(s3_uri, header=None, encoding='utf-8')[0].tolist()
|
| 122 |
|
|
@@ -125,9 +132,9 @@ if __name__ == "__main__":
|
|
| 125 |
# def get_skills(resumes: str) -> list:
|
| 126 |
|
| 127 |
# template_resumes_get_skills = """
|
| 128 |
-
# Given the following string, delimited by <RESUMES> and </RESUMES> which contains resumes which are not properly formatted, categorize the resumes based on domain.
|
| 129 |
# For each domain list the skills of the resumes that are part of that domain.
|
| 130 |
-
|
| 131 |
# Create a JSON object where they keys are the domains and the values are a list containing the skills.
|
| 132 |
|
| 133 |
# Return that JSON object only.
|
|
@@ -155,5 +162,5 @@ if __name__ == "__main__":
|
|
| 155 |
# if __name__ == "__main__":
|
| 156 |
# resumes = get_resumes()
|
| 157 |
# print(resumes)
|
| 158 |
-
|
| 159 |
-
|
|
|
|
| 12 |
llm = ChatOpenAI(temperature=0.0, openai_api_key=os.environ["OPENAI"])
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
| 15 |
def generate_skills() -> list:
|
|
|
|
| 16 |
template_generate_skills = """
|
| 17 |
Can you generate me a list of skills you would need to be successfully employed in a Data Scientist role?
|
| 18 |
Return 10 skills as a JSON list.
|
| 19 |
"""
|
| 20 |
|
| 21 |
+
prompt_generate_skills = ChatPromptTemplate.from_template(
|
| 22 |
+
template=template_generate_skills
|
| 23 |
+
)
|
| 24 |
+
role_skills = LLMChain(
|
| 25 |
+
llm=llm, prompt=prompt_generate_skills, output_key="role_skills"
|
| 26 |
+
)
|
| 27 |
|
| 28 |
generate_skills_chain = SequentialChain(
|
| 29 |
chains=[role_skills],
|
| 30 |
input_variables=[],
|
| 31 |
output_variables=["role_skills"],
|
| 32 |
+
verbose=False,
|
| 33 |
)
|
| 34 |
|
| 35 |
result = generate_skills_chain({})
|
| 36 |
result_array = json.loads(result["role_skills"])["skills"]
|
| 37 |
return result_array
|
| 38 |
|
|
|
|
| 39 |
|
| 40 |
+
def generate_resume(skills: list) -> str:
|
| 41 |
template_generate_resume = """
|
| 42 |
Given the following list of skills as an array delimited by three backticks, generate a resume of a data scientist with 3 years of experience.
|
| 43 |
Make sure to include a section "skills" in the resume.
|
|
|
|
| 47 |
```
|
| 48 |
"""
|
| 49 |
|
| 50 |
+
prompt_generate_resume = ChatPromptTemplate.from_template(
|
| 51 |
+
template=template_generate_resume
|
| 52 |
+
)
|
| 53 |
resume = LLMChain(llm=llm, prompt=prompt_generate_resume, output_key="resume")
|
| 54 |
|
| 55 |
generate_resume_chain = SequentialChain(
|
| 56 |
chains=[resume],
|
| 57 |
input_variables=["skills"],
|
| 58 |
output_variables=["resume"],
|
| 59 |
+
verbose=False,
|
| 60 |
)
|
| 61 |
|
| 62 |
result = generate_resume_chain({"skills": skills})
|
| 63 |
|
| 64 |
return result
|
| 65 |
|
| 66 |
+
|
| 67 |
def retrieve_skills(resume: str) -> str:
|
|
|
|
| 68 |
template_retrieve_skills = """
|
| 69 |
Given the following resume delimited by three backticks, retrieve the skills this data scientist possesses.
|
| 70 |
Return them as a JSON list.
|
|
|
|
| 74 |
```
|
| 75 |
"""
|
| 76 |
|
| 77 |
+
prompt_retrieve_skills = ChatPromptTemplate.from_template(
|
| 78 |
+
template=template_retrieve_skills
|
| 79 |
+
)
|
| 80 |
skills = LLMChain(llm=llm, prompt=prompt_retrieve_skills, output_key="skills")
|
| 81 |
|
| 82 |
retrieve_skills_chain = SequentialChain(
|
| 83 |
chains=[skills],
|
| 84 |
input_variables=["resume"],
|
| 85 |
output_variables=["skills"],
|
| 86 |
+
verbose=False,
|
| 87 |
)
|
| 88 |
|
| 89 |
result = retrieve_skills_chain({"resume": resume})
|
|
|
|
| 91 |
|
| 92 |
return result_array
|
| 93 |
|
| 94 |
+
|
| 95 |
+
def get_score(true_values: list, predicted_values: list) -> float:
|
| 96 |
intersection_list = [value for value in predicted_values if value in true_values]
|
| 97 |
print(intersection_list)
|
| 98 |
+
return len(intersection_list) / len(true_values)
|
| 99 |
+
|
| 100 |
|
| 101 |
if __name__ == "__main__":
|
| 102 |
role_skills = generate_skills()
|
|
|
|
| 114 |
# 's3',
|
| 115 |
# region_name='eu-west-1'
|
| 116 |
# )
|
| 117 |
+
|
| 118 |
+
# resumes = s3.get_object(Bucket='ausy-datalake-drift-nonprod', Key='resume-matcher/raw/resume-dataset.csv')
|
| 119 |
+
|
| 120 |
+
# resumes_list = resumes['Body'].read().decode('utf-8').splitlines()
|
| 121 |
+
# resumes_list = resumes['Body'].read().decode('utf-8').splitlines()
|
| 122 |
+
# resumes_list = str(resumes_list).replace('. ', '.\n')
|
| 123 |
+
# resumes_list = str(resumes_list).replace('â¢', '\n - ')
|
| 124 |
+
# resumes_list = [s.replace('. ', '.\n') for s in resumes_list]
|
| 125 |
+
# resumes_list = [s.replace('â¢', '\n - ') for s in resumes_list]
|
| 126 |
+
# resume_string =''.join(resumes_list)
|
| 127 |
# s3_uri = urlparse("s3://ausy-datalake-drift-nonprod/resume-matcher/raw/resume-dataset.csv", allow_fragments=False).geturl()
|
| 128 |
# resumes_list = pd.read_csv(s3_uri, header=None, encoding='utf-8')[0].tolist()
|
| 129 |
|
|
|
|
| 132 |
# def get_skills(resumes: str) -> list:
|
| 133 |
|
| 134 |
# template_resumes_get_skills = """
|
| 135 |
+
# Given the following string, delimited by <RESUMES> and </RESUMES> which contains resumes which are not properly formatted, categorize the resumes based on domain.
|
| 136 |
# For each domain list the skills of the resumes that are part of that domain.
|
| 137 |
+
|
| 138 |
# Create a JSON object where they keys are the domains and the values are a list containing the skills.
|
| 139 |
|
| 140 |
# Return that JSON object only.
|
|
|
|
| 162 |
# if __name__ == "__main__":
|
| 163 |
# resumes = get_resumes()
|
| 164 |
# print(resumes)
|
| 165 |
+
# for x in resumes:
|
| 166 |
+
# get_skills(x)
|