Spaces:
Runtime error
Runtime error
improve format of the app
Browse files- app.py +64 -45
- intro.py +1 -0
- recruiting_assistant.py +62 -23
- scripts/process-data.py +8 -8
app.py
CHANGED
|
@@ -235,52 +235,71 @@ with demo:
|
|
| 235 |
</div>
|
| 236 |
"""
|
| 237 |
)
|
| 238 |
-
gr.
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
b2 = gr.Button("Write a relevant intro")
|
| 264 |
-
gr.Markdown(
|
| 265 |
-
"""
|
| 266 |
-
|
| 267 |
-
## 3. You have a relevant introduction email to send to the customer.
|
| 268 |
-
"""
|
| 269 |
-
)
|
| 270 |
-
text_intro = gr.Textbox(label="Intro Email")
|
| 271 |
-
evaluation = gr.Textbox(label="Evaluation of the skills")
|
| 272 |
-
b2.click(
|
| 273 |
-
recruiting_assistant.create_intro,
|
| 274 |
-
inputs=[text_vacancy, text_resume],
|
| 275 |
-
outputs=[text_intro, evaluation],
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
gr.Examples(
|
| 279 |
-
examples=examples,
|
| 280 |
-
fn=search_resume,
|
| 281 |
-
inputs=text_vacancy,
|
| 282 |
-
outputs=text_search_result,
|
| 283 |
-
cache_examples=False,
|
| 284 |
-
)
|
| 285 |
|
| 286 |
demo.launch()
|
|
|
|
| 235 |
</div>
|
| 236 |
"""
|
| 237 |
)
|
| 238 |
+
with gr.Group():
|
| 239 |
+
with gr.Box():
|
| 240 |
+
with gr.Row(elem_id="prompt-container").style(
|
| 241 |
+
mobile_collapse=False, equal_height=True
|
| 242 |
+
):
|
| 243 |
+
with gr.Column():
|
| 244 |
|
| 245 |
+
gr.Markdown(
|
| 246 |
+
"""
|
| 247 |
+
|
| 248 |
+
## 1. Provide a vacancy and get back relevant resumes from an entire database of resumes for various roles.
|
| 249 |
+
"""
|
| 250 |
+
)
|
| 251 |
+
text_vacancy = gr.Textbox(
|
| 252 |
+
hint="Paste here a Vacancy...",
|
| 253 |
+
lines=7,
|
| 254 |
+
label="Copy/paste here a vacancy",
|
| 255 |
+
)
|
| 256 |
+
b1 = gr.Button("Search Resume").style(
|
| 257 |
+
margin=False,
|
| 258 |
+
rounded=(False, True, True, False),
|
| 259 |
+
full_width=False,
|
| 260 |
+
)
|
| 261 |
+
text_search_result = gr.Textbox(
|
| 262 |
+
hint="Top resumes will appear here ...",
|
| 263 |
+
label="Top resumes found in the database",
|
| 264 |
+
)
|
| 265 |
+
b1.click(
|
| 266 |
+
search_resume, inputs=text_vacancy, outputs=text_search_result
|
| 267 |
+
)
|
| 268 |
+
gr.Markdown(
|
| 269 |
+
"""
|
| 270 |
+
|
| 271 |
+
## 2. Select an appropriate resume for this vacancy, paste it in the textfield and get a relevant introduction email.
|
| 272 |
+
"""
|
| 273 |
+
)
|
| 274 |
+
text_resume = gr.Textbox(
|
| 275 |
+
hint="Paste here a Resume...",
|
| 276 |
+
label="Copy / Paste here your prefered resume from above and click the button to write an intro ",
|
| 277 |
+
)
|
| 278 |
+
b2 = gr.Button("Write a relevant intro").style(
|
| 279 |
+
margin=False,
|
| 280 |
+
rounded=(False, True, True, False),
|
| 281 |
+
full_width=False,
|
| 282 |
+
)
|
| 283 |
+
gr.Markdown(
|
| 284 |
+
"""
|
| 285 |
+
|
| 286 |
+
## 3. You have a relevant introduction email to send to the customer.
|
| 287 |
+
"""
|
| 288 |
+
)
|
| 289 |
+
text_intro = gr.Textbox(label="Intro Email")
|
| 290 |
+
evaluation = gr.Textbox(label="Evaluation of the skills")
|
| 291 |
+
b2.click(
|
| 292 |
+
recruiting_assistant.create_intro,
|
| 293 |
+
inputs=[text_vacancy, text_resume],
|
| 294 |
+
outputs=[text_intro, evaluation],
|
| 295 |
+
)
|
| 296 |
|
| 297 |
+
gr.Examples(
|
| 298 |
+
examples=examples,
|
| 299 |
+
fn=search_resume,
|
| 300 |
+
inputs=text_vacancy,
|
| 301 |
+
outputs=text_search_result,
|
| 302 |
+
cache_examples=False,
|
| 303 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
demo.launch()
|
intro.py
CHANGED
|
@@ -35,6 +35,7 @@ def call_openai(model, prompt):
|
|
| 35 |
print("Got a language_response!")
|
| 36 |
return result
|
| 37 |
|
|
|
|
| 38 |
vacancy = """
|
| 39 |
DATA SCIENTIST - GENTIS
|
| 40 |
========================
|
|
|
|
| 35 |
print("Got a language_response!")
|
| 36 |
return result
|
| 37 |
|
| 38 |
+
|
| 39 |
vacancy = """
|
| 40 |
DATA SCIENTIST - GENTIS
|
| 41 |
========================
|
recruiting_assistant.py
CHANGED
|
@@ -81,8 +81,12 @@ def create_intro(vacancy=vacancy, resume=resume):
|
|
| 81 |
```
|
| 82 |
"""
|
| 83 |
|
| 84 |
-
prompt_vacancy_get_skills = ChatPromptTemplate.from_template(
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
template_resume_check_skills = """
|
| 88 |
```
|
|
@@ -101,8 +105,12 @@ def create_intro(vacancy=vacancy, resume=resume):
|
|
| 101 |
```
|
| 102 |
"""
|
| 103 |
|
| 104 |
-
prompt_resume_check_skills = ChatPromptTemplate.from_template(
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
template_resume_past_experiences = """
|
| 108 |
Can you generate me a list of the past work experiences that the candidate has based on the resume below enclosed by three backticks.
|
|
@@ -113,8 +121,12 @@ def create_intro(vacancy=vacancy, resume=resume):
|
|
| 113 |
```
|
| 114 |
"""
|
| 115 |
|
| 116 |
-
prompt_resume_past_experiences = ChatPromptTemplate.from_template(
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
template_vacancy_check_past_experiences = """
|
| 120 |
```
|
|
@@ -133,8 +145,14 @@ def create_intro(vacancy=vacancy, resume=resume):
|
|
| 133 |
```
|
| 134 |
"""
|
| 135 |
|
| 136 |
-
prompt_vacancy_check_past_experiences = ChatPromptTemplate.from_template(
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
template_introduction_email = """
|
| 140 |
You are a recruitment specialist that tries to place the right profiles for the right job.
|
|
@@ -159,31 +177,51 @@ def create_intro(vacancy=vacancy, resume=resume):
|
|
| 159 |
Skills: print here a comma seperated list of the "skills_present" key of the JSON object {resume_skills}
|
| 160 |
"""
|
| 161 |
|
| 162 |
-
prompt_introduction_email = ChatPromptTemplate.from_template(
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
match_resume_vacancy_skills_chain = SequentialChain(
|
| 166 |
-
chains=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
input_variables=["vacancy", "resume"],
|
| 168 |
-
output_variables=[
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
)
|
| 171 |
|
| 172 |
result = match_resume_vacancy_skills_chain({"vacancy": vacancy, "resume": resume})
|
| 173 |
print(result)
|
| 174 |
|
| 175 |
-
resume_skills = json.loads(result[
|
| 176 |
relevant_skills = len(resume_skills["skills_present"])
|
| 177 |
-
total_skills = len(
|
| 178 |
-
|
| 179 |
-
|
|
|
|
| 180 |
|
| 181 |
-
check_past_experiences = json.loads(result[
|
| 182 |
relevant_experiences = len(check_past_experiences["relevant_experiences"])
|
| 183 |
-
total_experiences = len(
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
new_line =
|
| 187 |
|
| 188 |
score = f"""
|
| 189 |
Skills (Score: {score_skills}%)
|
|
@@ -192,5 +230,6 @@ def create_intro(vacancy=vacancy, resume=resume):
|
|
| 192 |
"""
|
| 193 |
return result["introduction_email"], score
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
| 81 |
```
|
| 82 |
"""
|
| 83 |
|
| 84 |
+
prompt_vacancy_get_skills = ChatPromptTemplate.from_template(
|
| 85 |
+
template=template_vacancy_get_skills
|
| 86 |
+
)
|
| 87 |
+
vacancy_skills = LLMChain(
|
| 88 |
+
llm=llm, prompt=prompt_vacancy_get_skills, output_key="vacancy_skills"
|
| 89 |
+
)
|
| 90 |
|
| 91 |
template_resume_check_skills = """
|
| 92 |
```
|
|
|
|
| 105 |
```
|
| 106 |
"""
|
| 107 |
|
| 108 |
+
prompt_resume_check_skills = ChatPromptTemplate.from_template(
|
| 109 |
+
template=template_resume_check_skills
|
| 110 |
+
)
|
| 111 |
+
resume_skills = LLMChain(
|
| 112 |
+
llm=llm, prompt=prompt_resume_check_skills, output_key="resume_skills"
|
| 113 |
+
)
|
| 114 |
|
| 115 |
template_resume_past_experiences = """
|
| 116 |
Can you generate me a list of the past work experiences that the candidate has based on the resume below enclosed by three backticks.
|
|
|
|
| 121 |
```
|
| 122 |
"""
|
| 123 |
|
| 124 |
+
prompt_resume_past_experiences = ChatPromptTemplate.from_template(
|
| 125 |
+
template=template_resume_past_experiences
|
| 126 |
+
)
|
| 127 |
+
past_experiences = LLMChain(
|
| 128 |
+
llm=llm, prompt=prompt_resume_past_experiences, output_key="past_experiences"
|
| 129 |
+
)
|
| 130 |
|
| 131 |
template_vacancy_check_past_experiences = """
|
| 132 |
```
|
|
|
|
| 145 |
```
|
| 146 |
"""
|
| 147 |
|
| 148 |
+
prompt_vacancy_check_past_experiences = ChatPromptTemplate.from_template(
|
| 149 |
+
template=template_vacancy_check_past_experiences
|
| 150 |
+
)
|
| 151 |
+
check_past_experiences = LLMChain(
|
| 152 |
+
llm=llm,
|
| 153 |
+
prompt=prompt_vacancy_check_past_experiences,
|
| 154 |
+
output_key="check_past_experiences",
|
| 155 |
+
)
|
| 156 |
|
| 157 |
template_introduction_email = """
|
| 158 |
You are a recruitment specialist that tries to place the right profiles for the right job.
|
|
|
|
| 177 |
Skills: print here a comma seperated list of the "skills_present" key of the JSON object {resume_skills}
|
| 178 |
"""
|
| 179 |
|
| 180 |
+
prompt_introduction_email = ChatPromptTemplate.from_template(
|
| 181 |
+
template=template_introduction_email
|
| 182 |
+
)
|
| 183 |
+
introduction_email = LLMChain(
|
| 184 |
+
llm=llm, prompt=prompt_introduction_email, output_key="introduction_email"
|
| 185 |
+
)
|
| 186 |
|
| 187 |
match_resume_vacancy_skills_chain = SequentialChain(
|
| 188 |
+
chains=[
|
| 189 |
+
vacancy_skills,
|
| 190 |
+
resume_skills,
|
| 191 |
+
past_experiences,
|
| 192 |
+
check_past_experiences,
|
| 193 |
+
introduction_email,
|
| 194 |
+
],
|
| 195 |
input_variables=["vacancy", "resume"],
|
| 196 |
+
output_variables=[
|
| 197 |
+
"vacancy_skills",
|
| 198 |
+
"resume_skills",
|
| 199 |
+
"past_experiences",
|
| 200 |
+
"check_past_experiences",
|
| 201 |
+
"introduction_email",
|
| 202 |
+
],
|
| 203 |
+
verbose=False,
|
| 204 |
)
|
| 205 |
|
| 206 |
result = match_resume_vacancy_skills_chain({"vacancy": vacancy, "resume": resume})
|
| 207 |
print(result)
|
| 208 |
|
| 209 |
+
resume_skills = json.loads(result["resume_skills"])
|
| 210 |
relevant_skills = len(resume_skills["skills_present"])
|
| 211 |
+
total_skills = len(
|
| 212 |
+
resume_skills["skills_present"] + resume_skills["skills_not_present"]
|
| 213 |
+
)
|
| 214 |
+
score_skills = round(100.0 * (relevant_skills / total_skills), 2)
|
| 215 |
|
| 216 |
+
check_past_experiences = json.loads(result["check_past_experiences"])
|
| 217 |
relevant_experiences = len(check_past_experiences["relevant_experiences"])
|
| 218 |
+
total_experiences = len(
|
| 219 |
+
check_past_experiences["relevant_experiences"]
|
| 220 |
+
+ check_past_experiences["irrelevant_experiences"]
|
| 221 |
+
)
|
| 222 |
+
score_experiences = round(100.0 * (relevant_experiences / total_experiences), 2)
|
| 223 |
|
| 224 |
+
new_line = "\n"
|
| 225 |
|
| 226 |
score = f"""
|
| 227 |
Skills (Score: {score_skills}%)
|
|
|
|
| 230 |
"""
|
| 231 |
return result["introduction_email"], score
|
| 232 |
|
| 233 |
+
|
| 234 |
+
if __name__ == "__main__":
|
| 235 |
+
create_intro(vacancy=vacancy, resume=resume)
|
scripts/process-data.py
CHANGED
|
@@ -5,10 +5,10 @@
|
|
| 5 |
import pandas as pd
|
| 6 |
|
| 7 |
# Step 1: Read the parquet file
|
| 8 |
-
df = pd.read_parquet(
|
| 9 |
|
| 10 |
-
if
|
| 11 |
-
unique_classes = df[
|
| 12 |
print("Unique classes in 'Category' column:")
|
| 13 |
for cls in unique_classes:
|
| 14 |
print(cls)
|
|
@@ -16,18 +16,18 @@ else:
|
|
| 16 |
print("'Category' column does not exist in the data.")
|
| 17 |
|
| 18 |
# Step 2: Check if 'Resume' column exists
|
| 19 |
-
if
|
| 20 |
# Keep only the 'Resume' column
|
| 21 |
print(df.shape)
|
| 22 |
-
df = df.drop_duplicates(subset=[
|
| 23 |
print(df.shape)
|
| 24 |
-
df = df[[
|
| 25 |
# Remove all the new lines from each cell of the 'Resume' column
|
| 26 |
-
df[
|
| 27 |
else:
|
| 28 |
print("'Resume' column does not exist in the data.")
|
| 29 |
|
| 30 |
# Step 3: Write the filtered dataframe back to a csv file
|
| 31 |
-
df.to_csv(
|
| 32 |
|
| 33 |
print("Completed successfully")
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
|
| 7 |
# Step 1: Read the parquet file
|
| 8 |
+
df = pd.read_parquet("/Users/vincent/Downloads/csv-train.parquet")
|
| 9 |
|
| 10 |
+
if "Category" in df.columns:
|
| 11 |
+
unique_classes = df["Category"].unique()
|
| 12 |
print("Unique classes in 'Category' column:")
|
| 13 |
for cls in unique_classes:
|
| 14 |
print(cls)
|
|
|
|
| 16 |
print("'Category' column does not exist in the data.")
|
| 17 |
|
| 18 |
# Step 2: Check if 'Resume' column exists
|
| 19 |
+
if "Resume" in df.columns:
|
| 20 |
# Keep only the 'Resume' column
|
| 21 |
print(df.shape)
|
| 22 |
+
df = df.drop_duplicates(subset=["Resume"])
|
| 23 |
print(df.shape)
|
| 24 |
+
df = df[["Resume"]]
|
| 25 |
# Remove all the new lines from each cell of the 'Resume' column
|
| 26 |
+
df["Resume"] = df["Resume"].replace("\n", " ", regex=True)
|
| 27 |
else:
|
| 28 |
print("'Resume' column does not exist in the data.")
|
| 29 |
|
| 30 |
# Step 3: Write the filtered dataframe back to a csv file
|
| 31 |
+
df.to_csv("/Users/vincent/Downloads/output.csv", index=False, header=False)
|
| 32 |
|
| 33 |
print("Completed successfully")
|