Spaces:
Sleeping
Sleeping
# streamlit_health_dashboard.py | |
import msoffcrypto | |
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import numpy as np | |
from io import BytesIO | |
import os | |
# Create a session state variable for login status | |
# Initialize session state variables | |
if "authenticated" not in st.session_state: | |
st.session_state.authenticated = False | |
# Function to log out | |
def logout(): | |
st.session_state.authenticated = False | |
st.rerun() | |
# If not authenticated, show login form | |
if not st.session_state.authenticated: | |
with st.form("login_form"): | |
password_input = st.text_input("Enter password to access the dashboard:", type="password") | |
submitted = st.form_submit_button("Login") | |
if submitted: | |
if password_input == os.environ.get("password"): | |
st.session_state.authenticated = True | |
st.success("Login successful!") | |
st.rerun() | |
else: | |
st.error("Incorrect password. Please try again.") | |
st.stop() | |
else: | |
# Show logout button at the top after login | |
st.sidebar.button("πͺ Logout", on_click=logout) | |
local_excel_path = "all.xlsx" | |
if os.path.exists(local_excel_path): | |
#st.success(f"File found locally") | |
try : | |
with open(local_excel_path, "rb") as f: | |
office_file = msoffcrypto.OfficeFile(f) | |
office_file.load_key(password=os.environ.get('password')) # Provide the password | |
decrypted = BytesIO() | |
office_file.decrypt(decrypted) | |
df = pd.read_excel(decrypted) | |
df.columns = [str(col).strip() for col in df.columns] | |
except : | |
df = pd.read_excel(local_excel_path) | |
df.columns = [str(col).strip() for col in df.columns] | |
# df = pd.read_excel(local_excel_path) | |
# Load dataset | |
else : | |
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"]) | |
if uploaded_file is not None: | |
try : | |
# with open(uploaded_file, "rb") as f: | |
office_file = msoffcrypto.OfficeFile(uploaded_file) | |
office_file.load_key(password="Kemo3689") # Provide the password | |
decrypted = BytesIO() | |
office_file.decrypt(decrypted) | |
df = pd.read_excel(decrypted) | |
df.columns = [str(col).strip() for col in df.columns] | |
except : | |
df = pd.read_excel(uploaded_file) | |
df.columns = [str(col).strip() for col in df.columns] | |
# Data Cleaning | |
numeric_cols = ['Cholesterol', 'Triglycerides', 'HbA1c', 'UricAcid', 'Creatinine', 'SGOT(AST)', 'SGPT(ALT)'] | |
for col in numeric_cols: | |
df[col] = pd.to_numeric(df[col], errors='coerce') | |
# Sidebar: Year Filter | |
if 'year' in df.columns: | |
available_years = sorted(df['year'].dropna().unique()) | |
selected_year = st.sidebar.selectbox("Select Year", available_years) | |
df = df[df['year'] == selected_year] | |
dashboard_year = selected_year | |
else: | |
dashboard_year = 2024 # default if no year column exists | |
# Sidebar: Page selection | |
page = st.sidebar.selectbox("Select Page", ["Main Overview", "Detailed Analysis", "Advanced Analytics"]) | |
# Sidebar: Thresholds | |
st.sidebar.header("Threshold Settings π―") | |
uric_acid_thresh = st.sidebar.slider("Uric Acid Threshold", 5.0, 10.0, 7.0) | |
creatinine_thresh = st.sidebar.slider("Creatinine Threshold", 0.8, 2.0, 1.2) | |
sgot_thresh = st.sidebar.slider("SGOT(AST) Threshold", 30, 100, 50) | |
sgpt_thresh = st.sidebar.slider("SGPT(ALT) Threshold", 30, 100, 50) | |
# Sidebar: Filters | |
st.sidebar.header("Apply Filters π") | |
show_high_cholesterol = st.sidebar.checkbox("Show High Cholesterol Only (>220)") | |
show_high_tgs = st.sidebar.checkbox("Show High TGs Only (>150)") | |
show_high_hba1c = st.sidebar.checkbox("Show High HbA1c Only (>6.4)") | |
show_pre_diabetes = st.sidebar.checkbox("Show Pre-Diabetes (5.7-6.4)") | |
# Sidebar: Theme | |
theme = st.sidebar.radio("Choose Theme π", ["Light", "Dark"]) | |
if theme == "Dark": | |
st.markdown(""" | |
<style> | |
body { background-color: #0e1117; color: white; transition: all 0.5s ease; } | |
</style> | |
""", unsafe_allow_html=True) | |
else: | |
st.markdown(""" | |
<style> | |
body { background-color: white; color: black; transition: all 0.5s ease; } | |
</style> | |
""", unsafe_allow_html=True) | |
# Apply Filters | |
filtered_df = df.copy() | |
if show_high_cholesterol: | |
filtered_df = filtered_df[filtered_df['Cholesterol'] > 220] | |
if show_high_tgs: | |
filtered_df = filtered_df[filtered_df['Triglycerides'] > 150] | |
if show_high_hba1c: | |
filtered_df = filtered_df[filtered_df['HbA1c'] > 6.4] | |
if show_pre_diabetes: | |
filtered_df = filtered_df[(filtered_df['HbA1c'] >= 5.7) & (filtered_df['HbA1c'] <= 6.4)] | |
### ----------------- Main Overview Page ------------------- | |
if page == "Main Overview": | |
st.title(f"Annual Health Checkup Dashboard (Data Year: {dashboard_year})") | |
st.header("Key Performance Indicators π") | |
# Calculate safe KPIs (dropna before mean) | |
high_uric_acid = (filtered_df['UricAcid'].dropna() > uric_acid_thresh).mean() * 100 | |
high_creatinine = (filtered_df['Creatinine'].dropna() > creatinine_thresh).mean() * 100 | |
elevated_sgot = (filtered_df['SGOT(AST)'].dropna() > sgot_thresh).mean() * 100 | |
elevated_sgpt = (filtered_df['SGPT(ALT)'].dropna() > sgpt_thresh).mean() * 100 | |
high_cholesterol = (filtered_df['Cholesterol'].dropna() > 220).mean() * 100 | |
high_tgs = (filtered_df['Triglycerides'].dropna() > 150).mean() * 100 | |
high_hba1c = (filtered_df['HbA1c'].dropna() > 6.2).mean() * 100 | |
col1, col2, col3 = st.columns(3) | |
col1.metric("High Uric Acid %", f"{high_uric_acid:.1f}%") | |
col2.metric("High Creatinine %", f"{high_creatinine:.1f}%") | |
col3.metric("Elevated SGOT/SGPT %", f"{(elevated_sgot + elevated_sgpt)/2:.1f}%") | |
col4, col5 = st.columns(2) | |
col4.metric("High Cholesterol %", f"{high_cholesterol:.1f}%") | |
col5.metric("High Triglycerides %", f"{high_tgs:.1f}%") | |
st.header("Distribution Charts π") | |
fig = px.histogram(filtered_df, x='Cholesterol', nbins=30, title='Cholesterol Distribution') | |
st.plotly_chart(fig) | |
fig = px.histogram(filtered_df, x='Triglycerides', nbins=30, title='Triglycerides Distribution') | |
st.plotly_chart(fig) | |
fig = px.histogram(filtered_df, x='HbA1c', nbins=30, title='HbA1c Distribution') | |
st.plotly_chart(fig) | |
st.header("Pie Charts for Elevated Metrics π₯§") | |
metrics = { | |
'Cholesterol >220': filtered_df['Cholesterol'] > 220, | |
'Triglycerides >150': filtered_df['Triglycerides'] > 150, | |
'HbA1c >6.2': filtered_df['HbA1c'] > 6.4, | |
'Pre-Diabetic' : filtered_df['HbA1c'].between(5.7, 6.4), | |
'Uric Acid': filtered_df['UricAcid'] > uric_acid_thresh, | |
'Creatinine': filtered_df['Creatinine'] > creatinine_thresh, | |
'SGOT(AST)': filtered_df['SGOT(AST)'] > sgot_thresh, | |
'SGPT(ALT)': filtered_df['SGPT(ALT)'] > sgpt_thresh | |
} | |
for metric_name, condition in metrics.items(): | |
fig = px.pie(names=["Above Threshold", "Normal"], values=[condition.sum(), (~condition).sum()], title=metric_name) | |
st.plotly_chart(fig) | |
### ----------------- Detailed Analysis Page ------------------- | |
elif page == "Detailed Analysis": | |
st.title(f"Detailed Analysis (Data Year: {dashboard_year})") | |
st.header("Correlation Heatmap π₯") | |
corr = filtered_df[numeric_cols].corr() | |
fig, ax = plt.subplots(figsize=(10, 8)) | |
sns.heatmap(corr, annot=True, cmap='coolwarm', ax=ax) | |
st.pyplot(fig) | |
st.header("Risk Summary Table π") | |
risk_summary = pd.DataFrame({ | |
'Category': ['Very High Risk', 'High Chol & TGs', 'High Chol Only', 'High TGs Only', 'Normal'], | |
'Count': [ | |
((filtered_df['Cholesterol'] > 300) | (filtered_df['Triglycerides'] > 400)).sum(), | |
((filtered_df['Cholesterol'] > 220) & (filtered_df['Triglycerides'] > 150)).sum(), | |
((filtered_df['Cholesterol'] > 220) & ~(filtered_df['Triglycerides'] > 150)).sum(), | |
((filtered_df['Triglycerides'] > 150) & ~(filtered_df['Cholesterol'] > 220)).sum(), | |
((filtered_df['Cholesterol'] <= 220) & (filtered_df['Triglycerides'] <= 150)).sum() | |
] | |
}) | |
st.dataframe(risk_summary) | |
st.header("Scatter Plot: Cholesterol vs TGs") | |
risk_category = filtered_df.apply( | |
lambda row: "Very High Risk" if (row['Cholesterol'] > 300 or row['Triglycerides'] > 400) | |
else ("High Chol & High TGs" if (row['Cholesterol'] > 220 and row['Triglycerides'] > 150) | |
else ("High Chol Only" if row['Cholesterol'] > 220 else ("High TGs Only" if row['Triglycerides'] > 150 else "Normal"))), | |
axis=1 | |
) | |
fig = px.scatter( | |
filtered_df, | |
x="Cholesterol", | |
y="Triglycerides", | |
color=risk_category, | |
trendline="ols", | |
hover_data=["HbA1c", "UricAcid"] | |
) | |
st.plotly_chart(fig) | |
st.subheader("Other Scatter Plots") | |
fig1 = px.scatter(filtered_df, x="HbA1c", y="Cholesterol", trendline="ols", title="HbA1c vs Cholesterol") | |
st.plotly_chart(fig1) | |
fig2 = px.scatter(filtered_df, x="UricAcid", y="Creatinine", trendline="ols", title="Uric Acid vs Creatinine") | |
st.plotly_chart(fig2) | |
fig3 = px.scatter(filtered_df, x="SGPT(ALT)", y="SGOT(AST)", trendline="ols", title="SGPT(ALT) vs SGOT(AST)") | |
st.plotly_chart(fig3) | |
### ----------------- Advanced Analytics Page ------------------- | |
elif page == "Advanced Analytics": | |
st.title("π Advanced Analytics") | |
st.info("Coming Soon: Predictive modeling for health risks!") | |