import torch from diffusers.utils import load_image from diffusers import FluxControlNetModel from diffusers.pipelines import FluxControlNetPipeline # Load pipeline controlnet = FluxControlNetModel.from_pretrained( "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16 ) pipe = FluxControlNetPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16 ) pipe.to("cuda") # Load a control image uploaded_file = st.file_uploader("Choose an image", type=["png", "jpg"]) control_image = None; if uploaded_file is not None: bytes_data = uploaded_file.getvalue control_image = bytes_data st.write(f"filename: {uploaded_file.name}") st.image(bytes_data) w, h = control_image.size # Upscale x4 control_image = control_image.resize((w * 4, h * 4)) image = pipe( prompt="", control_image=control_image, controlnet_conditioning_scale=0.6, num_inference_steps=28, guidance_scale=3.5, height=control_image.size[1], width=control_image.size[0] ).images[0] st.image(image)