File size: 94,029 Bytes
b247dc4 5a40a87 b247dc4 9e806a7 0b84806 9e806a7 b247dc4 9ea5642 b247dc4 9ea5642 b247dc4 8719af2 1da0a65 8719af2 b247dc4 1da0a65 b247dc4 edbe15e b247dc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 |
"""Rajkumar prompt formatter."""
from random import shuffle
from manifest import Manifest
from schema import Table
import re
import time
class RajkumarFormatter:
"""RajkumarFormatter class.
From https://arxiv.org/pdf/2204.00498.pdf.
"""
table_sep: str = "\n\n"
shuffle_table_order: bool = True
_cache: dict[tuple[str, str, str], list[str]] = {}
clean_whitespace = False
@classmethod
def format_table(cls, table: Table) -> str:
"""Get table format."""
table_fmt = []
for col in table.columns or []:
# This is technically an incorrect type, but it should be a catchall word
table_fmt.append(f" {col.name} {col.dtype or 'any'}")
if table_fmt:
all_cols = ",\n".join(table_fmt)
create_tbl = f"CREATE TABLE {table.name} (\n{all_cols}\n)"
else:
create_tbl = f"CREATE TABLE {table.name}"
return create_tbl
@classmethod
def format_all_tables(cls, tables: list[Table], instruction: str) -> list[str]:
"""Get all tables format."""
table_texts = [cls.format_table(table) for table in tables]
key = ("tables", instruction, str(tables))
if key not in cls._cache:
shuffle(table_texts)
cls._cache[key] = table_texts
else:
table_texts = cls._cache[key]
return table_texts
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n\n/*\nHere is additional documentation about DuckDB that could be useful.\n--------\n{context_str}\n--------\n*/"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
return f"""{table_text}\n\n\n-- Using valid DuckDB SQL, answer the following question for the tables provided above.{context_text}\n\n-- {instruction}\n""" # noqa: E501
@classmethod
def format_model_output(cls, output_sql: str, prompt: str) -> str:
pattern = r"```(?:sql|mysql|duckdb)?\n?(.*?)```"
match = re.search(pattern, output_sql, re.DOTALL)
sql = match.group(1).strip() if match else output_sql.strip()
# Handle edge case where regex captured empty content
if not sql:
sql = output_sql.strip()
# Ensure single trailing semicolon
return sql.rstrip(';') + ';'
@classmethod
def format_gold_output(cls, output_sql: str) -> str:
"""Format gold output for demonstration."""
return output_sql
class MotherDuckFormatter(RajkumarFormatter):
"""MotherDuck class."""
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
return f"""{table_text}\n\n\n-- Using valid DuckDB SQL, answer the following question for the tables provided above.{context_text}\n\n-- {instruction}\n```sql\n""" # noqa: E501
class DuckDBFormatter(RajkumarFormatter):
"""DuckDB class."""
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
return f"""{table_text}\n\n\n-- Using valid DuckDB SQL, answer the following question for the tables provided above.{context_text}\n\n-- {instruction}\n```sql\n""" # noqa: E501
class DuckDBInstFormatter(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """### Instruction:
Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.
Here is the database schema that the SQL query will run on:
{schema}
### Question:
{question}
### Response (use duckdb shorthand if possible):
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction,
)
return instruction
class DuckDBInstFormatterLlamaShort(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here are some DuckDB SQL syntax specifics you should be aware of:
- DuckDB uses double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB has an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR), my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
```sql
{schema}
```
Question:
Here is the question or an instruction the user provided:
{question}
Task:
Write a DuckDB SQL query for the given question!<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
```sql
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterLlamaBasic(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
```sql
{schema}
```
Question:
Here is the question or an instruction the user provided:
{question}
Task:
Write a DuckDB SQL query for the given question!<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
```sql
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterLlamaSyntax(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here are some DuckDB SQL syntax specifics you should be aware of:
- DuckDB uses double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB has an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR), my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
```sql
{schema}
```
Question:
Here is the question or an instruction the user provided:
{question}
Task:
Write a DuckDB SQL query for the given question!<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
```sql
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterGraniteShort(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """System:
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here are some DuckDB SQL syntax specifics you should be aware of:
- DuckDB use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR), my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Write a DuckDB SQL query for the given question!
Answer:
```
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterGraniteBench(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """System:
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here are some DuckDB SQL syntax specifics you should be aware of:
- DuckDB use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR), my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`
DuckDB Functions:
`count`: Calculates the total number of rows returned by a SQL query result. This function is commonly used to determine the row count of a SELECT operation., Parameters: ['result: The result object']
`sum`: Calculates the total of all non-null values in a specified column or expression across rows., Parameters: ['arg: Values to be aggregated']
`max`: Returns the largest value from all values in a specified column or expression., Parameters: ['arg: expression to evaluate maximum', "n: top 'n' value list size(optional)"]
`min`: Finds the smallest value in a group of input values., Parameters: ['expression: The input value to consider']
`avg`: Calculates the average of non-null values., Parameters: ['arg: Data to be averaged']
`read_csv_auto`: Automatically reads a CSV file and infers the data types of its columns., Parameters: ['file_path: Path to the CSV file', 'MD_RUN: Execution control parameter(optional)']
`replace`: Replacement scans in DuckDB allow users to register a callback that gets triggered when a query references a non-existent table. The callback can replace this table with a custom table function, effectively 'replacing' the non-existent table in the query execution process., Parameters: ['db: Database object where replacement applies', 'replacement: Handler for when table is missing', 'extra_data: Extra data given to callback(optional)', 'delete_callback: Cleanup for extra data provided(optional)']
`length`: Returns the length of a string, Parameters: ['value: String to measure length of']
`read_json_auto`: Automatically infers the schema from JSON data and reads it into a table format., Parameters: ['filename: Path to the JSON file.', 'compression: File compression type.(optional)', 'auto_detect: Auto-detect key names/types.(optional)', 'columns: Manual specification of keys/types.(optional)', 'dateformat: Date format for parsing dates.(optional)', 'format: JSON file format.(optional)', 'hive_partitioning: Hive partitioned path interpretation.(optional)', 'ignore_errors: Ignore parse errors option.(optional)', 'maximum_depth: Max depth for schema detection.(optional)', 'maximum_object_size: Max size of JSON object.(optional)', 'records: JSON record unpacking option.(optional)', 'sample_size: Number of objects for sampling.(optional)', 'timestampformat: Timestamp parsing format.(optional)', 'union_by_name: Unify schemas of files.(optional)']
`regexp_extract`: If a string matches a given regular expression pattern, it returns the specified capturing group or groups with optional capture group names., Parameters: ['string: Input string to search in.', 'pattern: Regex pattern to match.', 'group: Specifies which group to capture.(optional)', 'name_list: Named capture groups struct.(optional)', 'options: Regex matching options.(optional)']
`upper`: Converts a given string to uppercase characters., Parameters: ['string: String to make uppercase']
`substring`: Extracts a substring from a given string starting at a specified position and with a specified length., Parameters: ['string: The original string to extract from', 'start: Starting position for extraction', 'length: Number of characters to extract']
`datediff`: Calculates the number of specified partition boundaries between two dates., Parameters: ['part: Time unit to measure', 'startdate: The starting date', 'enddate: The ending date']
`split_part`: Splits a string by a specified separator and returns the part at a given index., Parameters: ['string: The string to be split', 'separator: The delimiter to split by', 'index: 1-based index to retrieve']
`position`: Locates the position of the first occurrence of "search_string" after position 1 in the provided "string". It returns 0 if "search_string" is not found., Parameters: ['search_string: The substring to find.', 'string: The string to search in.']
`pragma_version`: Retrieves the current version of DuckDB., Parameters: []
`ascii`: Returns the Unicode code point of the first character of a given string., Parameters: ['string: Input string for conversion.']
DuckDB Statements:
`FROM`: The FROM clause specifies the source of the data for the query. It can include a single table, multiple joined tables, or subqueries. The JOIN clause is used to combine rows from two or more tables based on a related column between them. There are several types of joins, including INNER, OUTER, CROSS, NATURAL, SEMI, ANTI, LATERAL, POSITIONAL, ASOF, and self-joins., Examples: ['SELECT * FROM table_name;', 'FROM table_name SELECT *;', 'FROM table_name;', 'SELECT tn.* FROM table_name tn;', 'SELECT * FROM schema_name.table_name;', 'SELECT t.i FROM range(100) AS t(i);', "SELECT * FROM 'test.csv';", 'SELECT * FROM (SELECT * FROM table_name);', 'SELECT t FROM t;', "SELECT t FROM (SELECT unnest(generate_series(41, 43)) AS x, 'hello' AS y) t;", 'SELECT * FROM table_name JOIN other_table ON table_name.key = other_table.key;', 'SELECT * FROM table_name TABLESAMPLE 10%;', 'SELECT * FROM table_name TABLESAMPLE 10 ROWS;', 'FROM range(100) AS t(i) SELECT sum(t.i) WHERE i % 2 = 0;', 'SELECT a.*, b.* FROM a CROSS JOIN b;', 'SELECT a.*, b.* FROM a, b;', 'SELECT n.*, r.* FROM l_nations n JOIN l_regions r ON (n_regionkey = r_regionkey);', 'SELECT * FROM city_airport NATURAL JOIN airport_names;', 'SELECT * FROM city_airport JOIN airport_names USING (iata);', 'SELECT * FROM city_airport SEMI JOIN airport_names USING (iata);', 'SELECT * FROM city_airport WHERE iata IN (SELECT iata FROM airport_names);', 'SELECT * FROM city_airport ANTI JOIN airport_names USING (iata);', 'SELECT * FROM city_airport WHERE iata NOT IN (SELECT iata FROM airport_names WHERE iata IS NOT NULL);', 'SELECT * FROM range(3) t(i), LATERAL (SELECT i + 1) t2(j);', 'SELECT * FROM generate_series(0, 1) t(i), LATERAL (SELECT i + 10 UNION ALL SELECT i + 100) t2(j);', 'SELECT * FROM trades t ASOF JOIN prices p ON t.symbol = p.symbol AND t.when >= p.when;', 'SELECT * FROM trades t ASOF LEFT JOIN prices p ON t.symbol = p.symbol AND t.when >= p.when;', 'SELECT * FROM trades t ASOF JOIN prices p USING (symbol, "when");', 'SELECT t.symbol, t.when AS trade_when, p.when AS price_when, price FROM trades t ASOF LEFT JOIN prices p USING (symbol, "when");', 'SELECT * FROM t AS t t1 JOIN t t2 USING(x);', 'FROM tbl SELECT i, s;', 'FROM tbl;']
`SELECT`: The SELECT statement retrieves rows from the database. It is used to query the database and retrieve data according to specific requirements. The statement can include several clauses, such as FROM, WHERE, GROUP BY, ORDER BY, and LIMIT, to filter, organize, and limit the query results., Examples: ['SELECT * FROM tbl;', 'SELECT j FROM tbl WHERE i = 3;', 'SELECT i, sum(j) FROM tbl GROUP BY i;', 'SELECT * FROM tbl ORDER BY i DESC LIMIT 3;', 'SELECT * FROM t1 JOIN t2 USING (a, b);', 'SELECT #1, #3 FROM tbl;', 'SELECT DISTINCT city FROM addresses;', 'SELECT d FROM (SELECT 1 AS a, 2 AS b) d;', 'SELECT rowid, id, content FROM t;']
`WHERE`: The WHERE clause specifies filters to apply to the data being queried, allowing selection of a specific subset of data. It is logically applied immediately after the FROM clause in a SQL query., Examples: ['SELECT * FROM table_name WHERE id = 3;', "SELECT * FROM table_name WHERE name ILIKE '%mark%';", 'SELECT * FROM table_name WHERE id = 3 OR id = 7;']
`ORDER BY`: The ORDER BY clause is an output modifier used to sort the rows in a query result set according to specified sorting criteria. It allows sorting in either ascending or descending order, and can also specify the position of NULL values (either at the beginning or end). The clause can contain multiple expressions that determine the sort order, and supports the sorting of columns by name, column position number, or the ALL keyword, which sorts by all columns in left-to-right order., Examples: ['SELECT * FROM addresses ORDER BY city;', 'SELECT * FROM addresses ORDER BY city DESC NULLS LAST;', 'SELECT * FROM addresses ORDER BY city, zip;', 'SELECT * FROM addresses ORDER BY city COLLATE DE;', 'SELECT * FROM addresses ORDER BY ALL;', 'SELECT * FROM addresses ORDER BY ALL DESC;']
`GROUP BY`: The `GROUP BY` clause is used to specify which columns should be used for grouping when performing aggregations in a `SELECT` statement. It aggregates data based on matching data in the specified columns, allowing other columns to be combined using aggregate functions. The query becomes an aggregate query if a `GROUP BY` clause is specified, even if no aggregates are present in the `SELECT` clause., Examples: ['SELECT city, count(*) FROM addresses GROUP BY city;', 'SELECT city, street_name, avg(income) FROM addresses GROUP BY city, street_name;', 'SELECT city, street_name FROM addresses GROUP BY ALL;', 'SELECT city, street_name, avg(income) FROM addresses GROUP BY ALL;']
`JOIN`: The FROM clause specifies the source of the data for the query. It can include a single table, multiple joined tables, or subqueries. The JOIN clause is used to combine rows from two or more tables based on a related column between them. There are several types of joins, including INNER, OUTER, CROSS, NATURAL, SEMI, ANTI, LATERAL, POSITIONAL, ASOF, and self-joins., Examples: ['SELECT * FROM table_name;', 'FROM table_name SELECT *;', 'FROM table_name;', 'SELECT tn.* FROM table_name tn;', 'SELECT * FROM schema_name.table_name;', 'SELECT t.i FROM range(100) AS t(i);', "SELECT * FROM 'test.csv';", 'SELECT * FROM (SELECT * FROM table_name);', 'SELECT t FROM t;', "SELECT t FROM (SELECT unnest(generate_series(41, 43)) AS x, 'hello' AS y) t;", 'SELECT * FROM table_name JOIN other_table ON table_name.key = other_table.key;', 'SELECT * FROM table_name TABLESAMPLE 10%;', 'SELECT * FROM table_name TABLESAMPLE 10 ROWS;', 'FROM range(100) AS t(i) SELECT sum(t.i) WHERE i % 2 = 0;', 'SELECT a.*, b.* FROM a CROSS JOIN b;', 'SELECT a.*, b.* FROM a, b;', 'SELECT n.*, r.* FROM l_nations n JOIN l_regions r ON (n_regionkey = r_regionkey);', 'SELECT * FROM city_airport NATURAL JOIN airport_names;', 'SELECT * FROM city_airport JOIN airport_names USING (iata);', 'SELECT * FROM city_airport SEMI JOIN airport_names USING (iata);', 'SELECT * FROM city_airport WHERE iata IN (SELECT iata FROM airport_names);', 'SELECT * FROM city_airport ANTI JOIN airport_names USING (iata);', 'SELECT * FROM city_airport WHERE iata NOT IN (SELECT iata FROM airport_names WHERE iata IS NOT NULL);', 'SELECT * FROM range(3) t(i), LATERAL (SELECT i + 1) t2(j);', 'SELECT * FROM generate_series(0, 1) t(i), LATERAL (SELECT i + 10 UNION ALL SELECT i + 100) t2(j);', 'SELECT * FROM trades t ASOF JOIN prices p ON t.symbol = p.symbol AND t.when >= p.when;', 'SELECT * FROM trades t ASOF LEFT JOIN prices p ON t.symbol = p.symbol AND t.when >= p.when;', 'SELECT * FROM trades t ASOF JOIN prices p USING (symbol, "when");', 'SELECT t.symbol, t.when AS trade_when, p.when AS price_when, price FROM trades t ASOF LEFT JOIN prices p USING (symbol, "when");', 'SELECT * FROM t AS t t1 JOIN t t2 USING(x);', 'FROM tbl SELECT i, s;', 'FROM tbl;']
`WITH`: The WITH clause in SQL is used to define common table expressions (CTEs), which are temporary result sets that can be referenced within a SELECT, INSERT, UPDATE, or DELETE statement. CTEs simplify complex queries by breaking them into more manageable parts, and they can be recursive, allowing them to reference themselves. The WITH clause can include multiple CTEs, and DuckDB supports specifying whether a CTE should be materialized explicitly or not., Examples: ['WITH cte AS (SELECT 42 AS x) SELECT * FROM cte;', 'WITH cte1 AS (SELECT 42 AS i), cte2 AS (SELECT i * 100 AS x FROM cte1) SELECT * FROM cte2;', 'WITH t(x) AS (⟨complex_query⟩) SELECT * FROM t AS t1, t AS t2, t AS t3;', 'WITH t(x) AS MATERIALIZED (⟨complex_query⟩) SELECT * FROM t AS t1, t AS t2, t AS t3;', 'WITH RECURSIVE FibonacciNumbers (RecursionDepth, FibonacciNumber, NextNumber) AS (SELECT 0 AS RecursionDepth, 0 AS FibonacciNumber, 1 AS NextNumber UNION ALL SELECT fib.RecursionDepth + 1 AS RecursionDepth, fib.NextNumber AS FibonacciNumber, fib.FibonacciNumber + fib.NextNumber AS NextNumber FROM FibonacciNumbers fib WHERE fib.RecursionDepth + 1 < 10) SELECT fn.RecursionDepth AS FibonacciNumberIndex, fn.FibonacciNumber FROM FibonacciNumbers fn;']
`LIMIT`: The LIMIT clause restricts the number of rows returned by a query. The OFFSET clause specifies the starting point within the result set from which to begin returning rows. LIMIT is commonly used to return a specified number of rows from a result set, while OFFSET is used to skip a specified number of rows before beginning to return rows., Examples: ['SELECT * FROM addresses LIMIT 5;', 'SELECT * FROM addresses LIMIT 5 OFFSET 5;', 'SELECT city, count(*) AS population FROM addresses GROUP BY city ORDER BY population DESC LIMIT 5;']
`CREATE TABLE`: The `CREATE TABLE` statement is used to create a new table in the catalog. It allows for the definition of columns, data types, constraints, and primary keys. Additionally, it supports features like creating temporary tables, using `CREATE TABLE ... AS SELECT` for replicating schemas or importing data from CSV files, incorporating `OR REPLACE` to overwrite existing tables, using `IF NOT EXISTS` to conditionally create tables, and defining check and foreign key constraints., Examples: ['CREATE TABLE t1 (i INTEGER, j INTEGER);', 'CREATE TABLE t1 (id INTEGER PRIMARY KEY, j VARCHAR);', 'CREATE TABLE t1 (id INTEGER, j VARCHAR, PRIMARY KEY (id, j));', 'CREATE TABLE t1 (\n i INTEGER NOT NULL,\n decimalnr DOUBLE CHECK (decimalnr < 10),\n date DATE UNIQUE,\n time TIMESTAMP\n);', 'CREATE TABLE t1 AS SELECT 42 AS i, 84 AS j;', "CREATE TEMP TABLE t1 AS SELECT * FROM read_csv('path/file.csv');", 'CREATE OR REPLACE TABLE t1 (i INTEGER, j INTEGER);', 'CREATE TABLE IF NOT EXISTS t1 (i INTEGER, j INTEGER);', 'CREATE TABLE nums AS SELECT i FROM range(0, 3) t(i);', 'CREATE TABLE t1 (id INTEGER PRIMARY KEY, percentage INTEGER CHECK (0 <= percentage AND percentage <= 100));', 'CREATE TABLE t1 (id INTEGER PRIMARY KEY, j VARCHAR);\nCREATE TABLE t2 (\n id INTEGER PRIMARY KEY,\n t1_id INTEGER,\n FOREIGN KEY (t1_id) REFERENCES t1 (id)\n);', 'CREATE TABLE t1 (x FLOAT, two_x AS (2 * x));']
`SET`: The SET statement modifies a DuckDB configuration option at the specified scope, while the RESET statement changes the option to its default value. The scope can be GLOBAL, SESSION, or LOCAL (not yet implemented)., Examples: ["SET memory_limit = '10GB';", 'SET threads = 1;', 'SET threads TO 1;', 'RESET threads;', "SELECT current_setting('threads');", "SET GLOBAL search_path = 'db1,db2'", "SET SESSION default_collation = 'nocase';"]
`DROP`: The `DROP` statement in DuckDB is used to remove a catalog entry that was previously added with the `CREATE` command. It can drop various types of objects such as tables, views, functions, indexes, schemas, sequences, macros, and types. It also has options like `IF EXISTS` to prevent errors if the object does not exist and `CASCADE` to also drop all dependent objects., Examples: ['DROP TABLE tbl;', 'DROP VIEW IF EXISTS v1;', 'DROP FUNCTION fn;', 'DROP INDEX idx;', 'DROP SCHEMA sch;', 'DROP SEQUENCE seq;', 'DROP MACRO mcr;', 'DROP MACRO TABLE mt;', 'DROP TYPE typ;', 'DROP SCHEMA myschema CASCADE;']
`ALTER TABLE`: The `ALTER TABLE` statement is used to modify the schema of an existing table in the catalog. This includes adding, dropping, or modifying columns, renaming tables and columns, and setting or dropping default values and not null constraints. Changes made with `ALTER TABLE` are transactional, meaning they are not visible to other transactions until committed and can be rolled back., Examples: ['ALTER TABLE integers ADD COLUMN k INTEGER;', 'ALTER TABLE integers ADD COLUMN l INTEGER DEFAULT 10;', 'ALTER TABLE integers DROP k;', 'ALTER TABLE integers ALTER i TYPE VARCHAR;', "ALTER TABLE integers ALTER i SET DATA TYPE VARCHAR USING concat(i, '_', j);", 'ALTER TABLE integers ALTER COLUMN i SET DEFAULT 10;', 'ALTER TABLE integers ALTER COLUMN i DROP DEFAULT;', 'ALTER TABLE t ALTER COLUMN x SET NOT NULL;', 'ALTER TABLE t ALTER COLUMN x DROP NOT NULL;', 'ALTER TABLE integers RENAME TO integers_old;', 'ALTER TABLE integers RENAME i TO j;']
`HAVING`: The HAVING clause is used after the GROUP BY clause in SQL to filter the grouped results. It performs filtering based on aggregate functions and conditions imposed on the grouped data. Unlike the WHERE clause, which filters rows before grouping, the HAVING clause filters after the grouping has been completed., Examples: ['SELECT city, count(*) FROM addresses GROUP BY city HAVING count(*) >= 50;', 'SELECT city, street_name, avg(income) FROM addresses GROUP BY city, street_name HAVING avg(income) > 2 * median(income);']
`UPDATE`: The UPDATE statement modifies the values of rows in a table. It allows updating specific columns for rows that meet certain conditions, retaining previous values for unspecified columns. The statement can use data from other tables or the same table to determine the new values, using joins or subqueries., Examples: ['UPDATE tbl SET i = 0 WHERE i IS NULL;', 'UPDATE tbl SET i = 1, j = 2;', 'UPDATE original SET value = new.value FROM new WHERE original.key = new.key;', 'UPDATE original SET value = (SELECT new.value FROM new WHERE original.key = new.key);', "UPDATE original AS true_original SET value = (SELECT new.value || ' a change!' AS value FROM original AS new WHERE true_original.key = new.key);", "UPDATE city SET revenue = revenue + 100 FROM country WHERE city.country_code = country.code AND country.name = 'France';"]
`USE`: The `USE` statement selects a database and optional schema to use as the default for future operations, such as when creating tables without a fully qualified name., Examples: ['USE memory;', 'USE duck.main;']
`INSERT`: The INSERT statement is used to insert new data into a table in DuckDB. It can insert specific values, results from a query, handle conflicts with ON CONFLICT clauses, and return inserted rows using the RETURNING clause., Examples: ['INSERT INTO tbl VALUES (1), (2), (3);', 'INSERT INTO tbl SELECT * FROM other_tbl;', 'INSERT INTO tbl (i) VALUES (1), (2), (3);', 'INSERT INTO tbl (i) VALUES (1), (DEFAULT), (3);', 'INSERT OR IGNORE INTO tbl (i) VALUES (1);', 'INSERT OR REPLACE INTO tbl (i) VALUES (1);', 'INSERT INTO tbl BY POSITION VALUES (5, 42);', 'INSERT INTO tbl BY NAME (SELECT 42 AS b, 32 AS a);', 'INSERT INTO tbl VALUES (1, 84) ON CONFLICT DO NOTHING;', 'INSERT INTO tbl VALUES (1, 84) ON CONFLICT DO UPDATE SET j = EXCLUDED.j;', 'INSERT INTO tbl (j, i) VALUES (168, 1) ON CONFLICT DO UPDATE SET j = EXCLUDED.j;', 'INSERT INTO tbl BY NAME (SELECT 84 AS j, 1 AS i) ON CONFLICT DO UPDATE SET j = EXCLUDED.j;', 'INSERT INTO t1 SELECT 42 RETURNING *;', 'INSERT INTO t2 SELECT 2 AS i, 3 AS j RETURNING *, i * j AS i_times_j;', "CREATE TABLE t3 (i INTEGER PRIMARY KEY, j INTEGER); CREATE SEQUENCE 't3_key'; INSERT INTO t3 SELECT nextval('t3_key') AS i, 42 AS j UNION ALL SELECT nextval('t3_key') AS i, 43 AS j RETURNING *;"]
`COPY`: The COPY statement in DuckDB is used to transfer data between DuckDB tables and external files. It supports various file formats such as CSV, Parquet, and JSON, and can either import data from these files into a DuckDB table or export data from a DuckDB table to these files. The statement is versatile, allowing customization of options to handle different data formats, delimiters, headers, and more, making it useful for bulk data operations., Examples: ["COPY lineitem FROM 'lineitem.csv';", "COPY lineitem FROM 'lineitem.csv' (DELIMITER '|');", "COPY lineitem FROM 'lineitem.pq' (FORMAT PARQUET);", "COPY lineitem FROM 'lineitem.json' (FORMAT JSON, AUTO_DETECT true);", "COPY lineitem TO 'lineitem.csv' (FORMAT CSV, DELIMITER '|', HEADER);", "COPY (SELECT l_orderkey, l_partkey FROM lineitem) TO 'lineitem.parquet' (COMPRESSION ZSTD);", 'COPY FROM DATABASE db1 TO db2;', 'COPY FROM DATABASE db1 TO db2 (SCHEMA);']
`ATTACH`: The ATTACH statement in DuckDB is used to add a new database file to the catalog, allowing the database to be read from and written to. It supports file paths as well as HTTP and S3 endpoints. Detached databases need to be re-attached in new sessions. The DETACH statement is used to close and detach such databases, thereby releasing any locks held on the database file. ATTACH and DETACH allow for operating on multiple database files simultaneously, enabling data transfer across different databases., Examples: ["ATTACH 'file.db';", "ATTACH 'file.db' AS file_db;", "ATTACH 'file.db' (READ_ONLY);", "ATTACH 'file.db' (BLOCK_SIZE 16384);", "ATTACH 'sqlite_file.db' AS sqlite_db (TYPE SQLITE);", "ATTACH IF NOT EXISTS 'file.db';", "ATTACH IF NOT EXISTS 'file.db' AS file_db;", 'CREATE TABLE file.new_table (i INTEGER);', 'DETACH file;', 'SHOW DATABASES;', 'USE file;', "ATTACH 'https://blobs.duckdb.org/databases/stations.duckdb' AS stations_db;", "ATTACH 's3://duckdb-blobs/databases/stations.duckdb' AS stations_db (READ_ONLY);"]
`CALL`: The CALL statement invokes the given table function and returns the results., Examples: ['CALL duckdb_functions();', "CALL pragma_table_info('pg_am');"]
`VALUES`: The VALUES clause is used to specify a fixed number of rows. It can be utilized as a stand-alone statement, as part of the FROM clause, or as input to an INSERT INTO statement., Examples: ["VALUES ('Amsterdam', 1), ('London', 2);", "SELECT * FROM (VALUES ('Amsterdam', 1), ('London', 2)) cities(name, id);", "INSERT INTO cities VALUES ('Amsterdam', 1), ('London', 2);", "CREATE TABLE cities AS SELECT * FROM (VALUES ('Amsterdam', 1), ('London', 2)) cities(name, id);"]
`EXPLAIN`: DuckDB supports profiling queries using the EXPLAIN and EXPLAIN ANALYZE statements. The EXPLAIN statement provides the query plan and estimated cardinalities for each operator without executing the query. The EXPLAIN ANALYZE statement executes the query and shows the actual cardinalities and the wall-clock time spent in each operator., Examples: ['EXPLAIN SELECT * FROM table_name;', 'EXPLAIN ANALYZE SELECT * FROM table_name;']
`SUMMARIZE`: The SUMMARIZE statement returns summary statistics for a table, view, or a query., Examples: ['SUMMARIZE tbl;', 'SUMMARIZE SELECT * FROM tbl;']
`SAMPLE`: The SAMPLE clause allows you to run a query on a sample from the base table, speeding up query processing at the expense of accuracy, and is applied after the FROM clause but before the WHERE clause or any aggregates., Examples: ['SELECT * FROM addresses USING SAMPLE 1%;', 'SELECT * FROM addresses USING SAMPLE 1% (bernoulli);', 'SELECT * FROM (SELECT * FROM addresses) USING SAMPLE 10 ROWS;']
DuckDB Types:
`VARCHAR`: `VARCHAR` is a versatile data type used to store variable-length character strings, accommodating a wide range of text and string data without enforcing a specific length., Examples: ['CREATE TABLE people (name VARCHAR, age INTEGER);', "INSERT INTO documents (text) VALUES ('This is a VARCHAR example text.');", "SELECT * FROM employees WHERE department = 'Engineering';", 'ALTER TABLE students ADD COLUMN email VARCHAR;', "UPDATE orders SET status = 'Shipped' WHERE order_id = 102;", "COPY products TO 'products.csv' DELIMITER ',' HEADER;"]
`INTEGER`: The INTEGER data type, with aliases such as int, signed, int4, int32, integer, and integral, represents whole numbers and is commonly used to store numeric data without fractional components., Examples: ['-- Assigning integer values to columns in a CREATE TABLE statement\nCREATE TABLE my_table (id INTEGER, age INTEGER);', '-- Inserting integer values as literals within an INSERT statement\nINSERT INTO my_table VALUES (1, 25);', '-- Using integer operations in a SELECT statement\nSELECT id + 10 AS new_id FROM my_table;', '-- Casting a float to an integer\nSELECT CAST(3.7 AS INTEGER) AS whole_number;', '-- Defining a column to only accept non-negative integers using a CHECK constraint\nCREATE TABLE my_table (id INTEGER CHECK (id >= 0));', '-- Using the INTEGER type in a primary key definition\nCREATE TABLE users (user_id INTEGER PRIMARY KEY, username VARCHAR);', '-- Updating integer columns\nUPDATE my_table SET age = age + 1 WHERE id = 1;', '-- Comparing integer values in a WHERE clause\nSELECT * FROM my_table WHERE age > 20;']
`NULL`: The `NULL` type in SQL represents a missing or unknown value, allowing for fields within a table to be uninitialized or absent in data., Examples: ['SELECT NULL = NULL;', 'SELECT NULL IS NULL;', "INSERT INTO table_name (column1, column2) VALUES (NULL, 'data');", "SELECT coalesce(NULL, 'default_value');", 'UPDATE table_name SET column1 = NULL WHERE condition;', "SELECT CASE WHEN column IS NULL THEN 'Value is NULL' ELSE column END FROM table_name;"]
`STRUCT`: The `STRUCT` data type in SQL is used to create a column that contains an ordered list of columns, referred to as entries, which are accessed using named keys. This type is ideal for nesting multiple columns into a single column, allowing a structured and consistent data schema across all rows., Examples: ["SELECT struct_pack(key1 := 'value1', key2 := 42) AS s;", "SELECT {{'key1': 'value1', 'key2': 42}} AS s;", "SELECT a.x FROM (SELECT {{'x': 1, 'y': 2, 'z': 3}} AS a);", "SELECT struct_insert({{'a': 1, 'b': 2, 'c': 3}}, d := 4) AS s;", 'CREATE TABLE t1 (s STRUCT(v VARCHAR, i INTEGER));', "INSERT INTO t1 VALUES (row('a', 42));", "SELECT a.* FROM (SELECT {{'x': 1, 'y': 2, 'z': 3}} AS a);", "SELECT struct_extract({{'x space': 1, 'y': 2, 'z': 3}}, 'x space');"]
`FLOAT`: The FLOAT data type, also known by aliases FLOAT4, REAL, or float, represents a single precision floating-point number, facilitating approximate calculations and efficient handling of numerical data with precision typically up to 6 decimal digits and a range of at least 1E-37 to 1E+37., Examples: ['-- Example: Creating a table with a FLOAT column\nCREATE TABLE example_table (id INTEGER, value FLOAT);', '-- Example: Inserting values into a FLOAT column\nINSERT INTO example_table VALUES (1, 3.14), (2, 2.718);', '-- Example: Performing arithmetic operations with FLOAT values\nSELECT id, value * 2.0::FLOAT AS doubled_value FROM example_table;', '-- Example: Casting a numeric value to FLOAT\nSELECT CAST(100 AS FLOAT) AS float_value;', '-- Example: Using FLOAT values in a mathematical function\nSELECT SQRT(value) FROM example_table WHERE value > 0;', '-- Example: Comparing FLOAT values\nSELECT * FROM example_table WHERE value > 3.0::FLOAT;']
DuckDB Other Keywords:
`AS`: The `AS` keyword in SQL is used to create an alias for columns or tables, helping to simplify query logic and improve readability., Examples: ['SELECT first_name AS name FROM employees;', 'SELECT department AS dept FROM company;', 'CREATE VIEW sales_report AS SELECT * FROM sales WHERE year = 2023;', 'SELECT product_name AS name, SUM(sales) AS total_sales FROM store GROUP BY product_name;', 'SELECT c.customer_id, c.name AS customer_name, o.order_id, o.total_amount AS amount FROM customers c INNER JOIN orders o ON c.customer_id = o.customer_id;']
`AND`: "AND" is a logical operator used to combine multiple conditions in SQL queries, returning true only if all conditions are true., Examples: ["SELECT * FROM employees WHERE department = 'Sales' AND salary > 50000;", "SELECT * FROM orders WHERE order_date >= '2023-01-01' AND status = 'Pending';", "SELECT * FROM customers WHERE age > 21 AND city = 'New York';", "SELECT * FROM products WHERE category = 'Electronics' AND stock_quantity > 0;", "SELECT * FROM students WHERE grade = 'A' AND attendance_percentage > 90;"]
`OR`: The `ORDER BY` clause sorts query results based on specified columns or expressions, with optional ascending or descending order and handling of NULL values., Examples: ['SELECT * FROM addresses ORDER BY city;', 'SELECT * FROM addresses ORDER BY city DESC NULLS LAST;', 'SELECT * FROM addresses ORDER BY city, zip;', 'SELECT * FROM addresses ORDER BY city COLLATE DE;', 'SELECT * FROM addresses ORDER BY ALL;', 'SELECT * FROM addresses ORDER BY ALL DESC;']
`ON`: The `ON` keyword in SQL is used with various clauses and statements such as JOIN, UPDATE, DELETE, and ON CONFLICT to specify conditions for selecting, updating, or deleting rows that match specific criteria in relational databases., Examples: ['SELECT * FROM table1 INNER JOIN table2 ON table1.id = table2.id;', "UPDATE employees SET salary = salary * 1.1 ON department.id = employees.department_id WHERE department.name = 'Engineering';", "DELETE FROM orders WHERE orders.date < '2023-01-01' ON CONFLICT DO NOTHING;", "INSERT INTO products (id, name) VALUES (1, 'Widget') ON CONFLICT (id) DO UPDATE SET name = EXCLUDED.name;"]
`NOT`: The `NOT` keyword in SQL is used to negate a condition, meaning it reverses the truth value of the condition it's used with., Examples: ['SELECT * FROM Students WHERE NOT (grade > 80);', 'SELECT * FROM Employees WHERE NOT EXISTS (SELECT * FROM Promotions WHERE Promotions.employee_id = Employees.id);', "SELECT * FROM Products WHERE NOT (name LIKE 'A%');", 'SELECT * FROM Orders WHERE order_date IS NOT NULL;', 'SELECT * FROM Library WHERE NOT (publication_year BETWEEN 1980 AND 2000);']
`DISTINCT`: The `DISTINCT` keyword is used in the SQL `SELECT` statement to ensure that only unique values are returned for specified columns, effectively removing duplicate rows from the result set., Examples: ['SELECT DISTINCT city FROM addresses;', 'SELECT DISTINCT ON(country) city, population FROM cities ORDER BY population DESC;']
`DESC`: The keyword `desc` is used in SQL to describe the DESCENDING order in which query results should be sorted, often associated with the `ORDER BY` clause., Examples: ['SELECT name FROM employees ORDER BY salary DESC;', 'CREATE TABLE example (id INTEGER, name VARCHAR);', 'DESCRIBE example;', 'DESCRIBE SELECT * FROM example WHERE id < 10 ORDER BY name DESC;']
`IS`: The "IS" keyword is used in SQL to perform tests on values to check for NULL values or to use as part of statements like IS DISTINCT FROM which can handle NULLs in equality comparisons., Examples: ['SELECT 4 IS DISTINCT FROM NULL;', 'SELECT 4 IS NOT DISTINCT FROM 4;', 'SELECT NULL IS NULL;', 'SELECT NULL IS NOT NULL;']
`IN`: The `IN` keyword is used in SQL to specify a list of discrete values for a column to match against, typically in a `WHERE` clause, allowing for multiple specific conditions to be evaluated at once., Examples: ["SELECT * FROM employees WHERE department IN ('HR', 'Engineering', 'Marketing');", 'SELECT id, name FROM students WHERE grade IN (10, 11, 12);', "DELETE FROM orders WHERE order_status IN ('Cancelled', 'Returned');", "UPDATE items SET status = 'Unavailable' WHERE item_id IN (1001, 1002, 1003);", "SELECT * FROM logs WHERE severity IN ('ERROR', 'CRITICAL') ORDER BY timestamp DESC;"]
`ALL`: The `ALL` keyword in SQL specifies that operations should retain all duplicate rows, as seen in commands like `UNION ALL`, `INTERSECT ALL`, and `EXCEPT ALL`, which follow bag semantics instead of eliminating duplicates., Examples: ['UNION ALL ```sql\nSELECT * FROM range(2) t1(x)\nUNION ALL\nSELECT * FROM range(3) t2(x);\n```\nThis example demonstrates using `UNION ALL` to combine rows from two queries without eliminating duplicates.', 'INTERSECT ALL ```sql\nSELECT unnest([5, 5, 6, 6, 6, 6, 7, 8]) AS x\nINTERSECT ALL\nSELECT unnest([5, 6, 6, 7, 7, 9]);\n```\nThis example shows using `INTERSECT ALL` to select rows that are present in both result sets, keeping duplicate values.', 'EXCEPT ALL ```sql\nSELECT unnest([5, 5, 6, 6, 6, 6, 7, 8]) AS x\nEXCEPT ALL\nSELECT unnest([5, 6, 6, 7, 7, 9]);\n```\nThis example illustrates `EXCEPT ALL`, which selects all rows present in the first query but not in the second, without removing duplicates.', 'ORDER BY ALL ```sql\nSELECT *\nFROM addresses\nORDER BY ALL;\n```\nThis SQL command uses `ORDER BY ALL` to sort the result set by all columns sequentially from left to right.']
`LIKE`: The `LIKE` expression is used to determine if a string matches a specified pattern, allowing wildcard characters such as `_` to represent any single character and `%` to match any sequence of characters., Examples: ["SELECT 'abc' LIKE 'abc'; -- true", "SELECT 'abc' LIKE 'a%'; -- true", "SELECT 'abc' LIKE '_b_'; -- true", "SELECT 'abc' LIKE 'c'; -- false", "SELECT 'abc' LIKE 'c%'; -- false", "SELECT 'abc' LIKE '%c'; -- true", "SELECT 'abc' NOT LIKE '%c'; -- false", "SELECT 'abc' ILIKE '%C'; -- true"]
`IF`: The `IF` keyword is used in conditional constructs, most commonly found in the `IF NOT EXISTS` or `IF EXISTS` clauses in SQL commands to prevent errors or skip operations, such as creating or dropping a database or table when certain conditions are met., Examples: ['CREATE DATABASE IF NOT EXISTS ducks_db;', 'CREATE TABLE IF NOT EXISTS t1 (i INTEGER, j INTEGER);', 'CREATE TABLE t1 (id INTEGER, PRIMARY KEY (id), UNIQUE (id)) IF NOT EXISTS;']
`EXISTS`: The `EXISTS` operator is used to determine if a subquery returns any rows, returning `true` if at least one row exists and `false` otherwise., Examples: ["SELECT EXISTS (FROM grades WHERE course = 'Math') AS math_grades_present;", "SELECT EXISTS (FROM grades WHERE course = 'History') AS history_grades_present;"]
`COLUMN`: The keyword 'column' is used to refer to the vertical entities in a table, defining the structure and type of data stored in a database table., Examples: ['ALTER TABLE integers ADD COLUMN k INTEGER;', 'ALTER TABLE integers DROP COLUMN k;', 'ALTER TABLE integers RENAME COLUMN i TO j;', 'SELECT * EXCLUDE (city) FROM addresses;', 'SELECT * REPLACE (lower(city) AS city) FROM addresses;', "SELECT COLUMNS(c -> c LIKE '%num%') FROM addresses;", "SELECT COLUMNS('(id|numbers?)') FROM numbers;"]
`INTO`: The `INSERT INTO` clause in SQL is used to add new records to a table, either by providing specific values or by inserting data from an existing query., Examples: ['INSERT INTO tbl VALUES (1), (2), (3);', 'INSERT INTO tbl SELECT * FROM other_tbl;', 'INSERT INTO tbl (i) VALUES (1), (2), (3);', 'INSERT INTO tbl (i) VALUES (1), (DEFAULT), (3);', 'INSERT OR IGNORE INTO tbl (i) VALUES (1);', 'INSERT OR REPLACE INTO tbl (i) VALUES (1);', 'INSERT INTO tbl RETURNING *;', 'INSERT INTO tbl (a, b) BY POSITION VALUES (5, 42);', 'INSERT INTO tbl BY NAME (SELECT 42 AS b, 32 AS a);']
`TO`: The `TO` keyword in SQL is used within the `COPY` statement to export data from a database table or query result to an external file, supporting various formats such as CSV, Parquet, JSON, and databases., Examples: ["COPY lineitem TO 'lineitem.csv' (FORMAT CSV, DELIMITER '|', HEADER);", 'COPY lineitem TO "lineitem.csv";', "COPY (SELECT l_orderkey, l_partkey FROM lineitem) TO 'lineitem.parquet' (COMPRESSION ZSTD);", "COPY lineitem TO 'lineitem.tsv' (DELIMITER '\\t', HEADER false);", "COPY lineitem(l_orderkey) TO 'orderkey.tbl' (DELIMITER '|');", "COPY (SELECT 42 AS a, 'hello' AS b) TO 'query.csv' (DELIMITER ',');", "COPY (SELECT 42 AS a, 'hello' AS b) TO 'query.parquet' (FORMAT PARQUET);", "COPY (SELECT 42 AS a, 'hello' AS b) TO 'query.ndjson' (FORMAT JSON);"]
`EXCLUDE`: The `EXCLUDE` keyword is used in SQL to exclude certain columns from being selected when using the star (`*`) expression, providing more control over the columns included in the query results., Examples: ['SELECT * EXCLUDE (city) FROM addresses;', 'SELECT COLUMNS(* EXCLUDE (number)) FROM numbers;', 'INSERT INTO tbl SELECT * EXCLUDE (id) FROM source_table;']
`YEAR`: The keyword `YEAR` is used in intervals to specify periods of time, specifically one year, and is stored as 12 months in database systems., Examples: ['SELECT INTERVAL 1 YEAR;', "SELECT INTERVAL '1.5' YEARS; -- Returns 12 months due to truncation", "SELECT DATE '2000-01-01' + INTERVAL 1 YEAR;", "SELECT datepart('year', INTERVAL 14 MONTHS); -- Returns 1", 'PIVOT Cities ON Year USING sum(Population);']
`USING`: The `USING` clause in SQL is used in conjunction with a `JOIN` to specify columns to compare for equality when joining tables, simplifying syntax when column names are the same in both tables., Examples: ['SELECT * FROM employees JOIN departments USING (department_id);', 'PIVOT sales_data ON month USING sum(sales) GROUP BY category;', 'SELECT * FROM cities JOIN countries USING (country_code);', 'FROM test.csv USING SAMPLE 10 PERCENT;', 'SELECT product_id, order_date, SUM(quantity) FROM orders JOIN order_items USING (order_id) GROUP BY product_id, order_date;']
`ADD`: The `ADD COLUMN` clause in the `ALTER TABLE` statement allows for the inclusion of a new column with a specified data type and optional default value into an existing table., Examples: ['ALTER TABLE integers ADD COLUMN k INTEGER;', 'ALTER TABLE integers ADD COLUMN l INTEGER DEFAULT 10;', "UPDATE my_db.movies SET summary = prompt('summarize review in one sentence' || overview);", 'ALTER TABLE my_db.movies ADD COLUMN summary VARCHAR;', 'ALTER TABLE my_db.movies ADD COLUMN metadata STRUCT(main_characters VARCHAR[], genre VARCHAR, action INTEGER);']
`TYPE`: The `CREATE TYPE` statement is used to define a new data type in the catalog, allowing users to define enums, structs, unions, and type aliases for better schema and type management in SQL., Examples: ["CREATE TYPE mood AS ENUM ('happy', 'sad', 'curious');", 'CREATE TYPE many_things AS STRUCT(k INTEGER, l VARCHAR);', 'CREATE TYPE one_thing AS UNION(number INTEGER, string VARCHAR);', 'CREATE TYPE x_index AS INTEGER;']
`PRAGMA`: The 'PRAGMA' statement is a SQL extension used to modify the internal state of the database engine and influence its execution or behavior., Examples: ['PRAGMA database_list; -- List all databases', 'PRAGMA show_tables; -- List all tables', "PRAGMA table_info('table_name'); -- Get information about a specific table's columns", 'PRAGMA database_size; -- Get file and memory size of each database', "PRAGMA storage_info('table_name'); -- Retrieve storage information for a specific table", 'PRAGMA show_databases; -- Equivalent to SHOW DATABASES statement', 'PRAGMA version; -- Show DuckDB version information', 'PRAGMA platform; -- Show platform identifier where DuckDB is running', 'PRAGMA enable_progress_bar; -- Enable progress bar for running queries', 'PRAGMA disable_progress_bar; -- Disable progress bar for running queries', 'PRAGMA enable_profiling; -- Enable query profiling', 'PRAGMA disable_profiling; -- Disable query profiling', 'PRAGMA verify_external; -- Enable verification of external operators', 'PRAGMA disable_verify_external; -- Disable verification of external operators', 'PRAGMA enable_object_cache; -- Enable caching of objects', 'PRAGMA disable_object_cache; -- Disable caching of objects', 'PRAGMA force_checkpoint; -- Force a checkpoint even when no changes are made', 'PRAGMA enable_checkpoint_on_shutdown; -- Run checkpoint on shutdown', 'PRAGMA disable_checkpoint_on_shutdown; -- Do not run checkpoint on shutdown']
`COLUMNS`: The `COLUMNS` expression in SQL is used to apply operations across multiple columns, allowing dynamic column selection through patterns, regular expressions, or lambda functions for querying or modifying datasets efficiently., Examples: ["SELECT COLUMNS(c -> c LIKE '%num%') FROM addresses;", "SELECT COLUMNS('number\\d+') FROM addresses;", 'SELECT COLUMNS(* EXCLUDE (empid, dept)) INTO NAME month VALUE sales UNPIVOT monthly_sales;', 'SELECT min(COLUMNS(* REPLACE (number + id AS number))), count(COLUMNS(* EXCLUDE (number))) FROM numbers;', "SELECT coalesce(*COLUMNS(['a', 'b', 'c'])) AS result FROM (SELECT NULL a, 42 b, true c);"]
`NAME`: The `INSERT` statement is used to add new rows of data into an existing table, either by specifying explicit values or by using results from a query., Examples: ['INSERT INTO tbl VALUES (1), (2), (3);', 'INSERT INTO tbl SELECT * FROM other_tbl;', 'INSERT INTO tbl (i) VALUES (1), (2), (3);', 'INSERT INTO tbl (i) VALUES (1), (DEFAULT), (3);', 'INSERT OR IGNORE INTO tbl (i) VALUES (1);', 'INSERT OR REPLACE INTO tbl (i) VALUES (1);']
`DATA`: The `CREATE DATABASE` statement allows you to create a new database, either by copying it from a local environment or zero-copy cloning within the same environment., Examples: ['CREATE DATABASE ducks;', 'CREATE OR REPLACE DATABASE ducks;', 'CREATE DATABASE IF NOT EXISTS ducks_db;', "CREATE DATABASE flying_ducks FROM './databases/local_ducks.db';"]
`DELIMITER`: The 'delimiter' keyword is used in SQL statements to specify the character that separates columns in a data representation, such as in CSV files, allowing for precise parsing of column values during data import or export operations., Examples: ["COPY lineitem FROM 'lineitem.csv' (DELIMITER '|');", "COPY ontime FROM 'flights.csv' (DELIMITER '|', HEADER);", "COPY lineitem TO 'lineitem.tbl' (DELIMITER '|', HEADER);", "COPY (SELECT * FROM ontime) TO 'ontime.csv' (DELIMITER ',', HEADER);", "EXPORT DATABASE 'directory' (FORMAT CSV, DELIMITER '|');"]
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Write a DuckDB SQL query for the given question! Make sure to only response with the SQL query and wrap it in ```sql\n<ANSWER>``` markdown code tags.
Answer:
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterLlama(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """<|begin_of_text|>
Your task is to generate valid DuckDB SQL to answer the following question, given a DuckDB database schema.
## DuckDB SQL syntax specifics you should be aware of:
### Case Insensitivity and Quoting:
Identifiers (tables, columns): Case-insensitive, but DuckDB remembers the case you use. Use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity.
```
CREATE TABLE "My Table" ("column_name" VARCHAR); -- Spaces and mixed case
SELECT "column_name" FROM "My Table";
```
### String Literals: Always use single quotes (') to define string literals.
```
SELECT 'This is a string' AS text;
```
### Direct File Querying: Query CSV, Parquet, and JSON files directly without loading them first.
```
SELECT * FROM 'data.csv';
SELECT * FROM 'data.parquet';
SELECT * FROM 'data.json';
```
### CREATE TABLE AS (CTAS): Create tables from query results.
```
CREATE TABLE squares AS SELECT i, i * i AS square FROM generate_series(1, 10) t(i);
```
### FROM-First Syntax (Optional SELECT): Start queries with FROM, and optionally omit SELECT *.
```
FROM my_table WHERE condition; -- Equivalent to SELECT * FROM my_table WHERE condition
```
### SELECT without FROM: DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly.
```
SELECT 1 + 1 AS result;
```
### GROUP BY ALL/ORDER BY ALL: Shorthand for grouping/ordering by all non-aggregated/all columns.
```
SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;
SELECT * FROM my_table ORDER BY ALL;
```
### SELECT COLUMNS(): Powerful way to select or transform multiple columns using patterns or functions.
```
-- Select columns matching a pattern
SELECT COLUMNS('sales_.*') FROM sales_data;
-- Transform multiple columns with a function
SELECT AVG(COLUMNS(*)) FROM sales_data;
```
### UNION BY NAME: Combine tables by matching column names, not just their positions.
```
SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;
```
### Implicit/Explicit Casting: DuckDB is generally more lenient with implicit type conversions, but you can always be explicit using ::
```
SELECT '42' + 1; -- Implicit cast, result is 43
SELECT '42'::INTEGER + 1; -- Explicit cast, result is 43
```
### String/List Slicing: Extract parts of strings and lists using [start:end] or [start:end:step] syntax.
```
SELECT 'DuckDB'[1:4]; -- Returns 'Duck'
SELECT [1, 2, 3, 4][1:3]; -- Returns [1, 2, 3]
```
### Simple List/Struct/Map/Array Creation: Create complex types using intuitive syntax.
In a SELECT statement:
```
SELECT [1, 2, 3] AS my_list, {{'a': 1, 'b': 'text'}} AS my_struct, MAP([1,2],['one','two']) as my_map;
```
When creating a table:
```
CREATE TABLE data (
my_list INTEGER[],
my_struct STRUCT(a INTEGER, b TEXT),
my_map MAP(INTEGER, VARCHAR),
my_array INTEGER[3]
);
```
### Timestamp Conversions and Extraction: Convert between text and timestamps, and extract date parts.
```
SELECT strftime(NOW(), '%Y-%m-%d'); -- Current date as 'YYYY-MM-DD'
SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP; -- String to timestamp
SELECT EXTRACT(YEAR FROM DATE '2023-07-23'); -- Extract year
```
### Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses.
```
SELECT a + b AS total
FROM my_table
WHERE total > 10
GROUP BY total
HAVING total < 20;
```
### List Comprehensions: Generate lists using expressions similar to Python list comprehensions.
```
SELECT [x*2 FOR x IN [1, 2, 3]]; -- Returns [2, 4, 6]
```
### Function Chaining: Chain multiple function calls together using the dot (.) operator.
```
SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB'
```
### Regular Expressions: DuckDB has built-in functions for regex matching, replacement, and extraction.
```
SELECT regexp_matches('DuckDB', 'Duck'); -- Returns true
SELECT regexp_replace('DuckDB', 'Duck', 'Goose'); -- Returns 'GooseDB'
SELECT regexp_extract('DuckDB', '(\w+)(DB)', 1); -- Returns 'Duck'
```
### Sampling: Quickly get a subset of your data with SAMPLE or TABLESAMPLE.
```
SELECT * FROM large_table USING SAMPLE 10%; -- Random 10% sample
SELECT * FROM large_table TABLESAMPLE BERNOULLI(10); -- Bernoulli sampling
```
### ATTACH and Access: Attach external databases and reference their objects using databasename.table_name syntax.
```
ATTACH 'my_database.duckdb' AS mydb;
SELECT * FROM mydb.my_table;
```
### SUMMARIZE: Get summary statistics (min, max, unique count, average, standard deviation, quartiles, and count) of a table.
```
SUMMARIZE table_name;
```
### DESCRIBE: Get schema of a table (column_name, column_type, null, key, default, extra).
```
DESCRIBE table_name;
```
Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Task:
Write a DuckDB SQL query for the given question!
Here is the valid DuckDB SQL query:
```
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterGranite(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """System:
Your task is to generate valid DuckDB SQL to answer the following question, given a DuckDB database schema.
## DuckDB SQL syntax specifics you should be aware of:
### Case Insensitivity and Quoting:
Identifiers (tables, columns): Case-insensitive, but DuckDB remembers the case you use. Use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity.
```
CREATE TABLE "My Table" ("column_name" VARCHAR); -- Spaces and mixed case
SELECT "column_name" FROM "My Table";
```
### String Literals: Always use single quotes (') to define string literals.
```
SELECT 'This is a string' AS text;
```
### Direct File Querying: Query CSV, Parquet, and JSON files directly without loading them first.
```
SELECT * FROM 'data.csv';
SELECT * FROM 'data.parquet';
SELECT * FROM 'data.json';
```
### CREATE TABLE AS (CTAS): Create tables from query results.
```
CREATE TABLE squares AS SELECT i, i * i AS square FROM generate_series(1, 10) t(i);
```
### FROM-First Syntax (Optional SELECT): Start queries with FROM, and optionally omit SELECT *.
```
FROM my_table WHERE condition; -- Equivalent to SELECT * FROM my_table WHERE condition
```
### SELECT without FROM: DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly.
```
SELECT 1 + 1 AS result;
```
### GROUP BY ALL/ORDER BY ALL: Shorthand for grouping/ordering by all non-aggregated/all columns.
```
SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;
SELECT * FROM my_table ORDER BY ALL;
```
### SELECT COLUMNS(): Powerful way to select or transform multiple columns using patterns or functions.
```
-- Select columns matching a pattern
SELECT COLUMNS('sales_.*') FROM sales_data;
-- Transform multiple columns with a function
SELECT AVG(COLUMNS(*)) FROM sales_data;
```
### UNION BY NAME: Combine tables by matching column names, not just their positions.
```
SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;
```
### Implicit/Explicit Casting: DuckDB is generally more lenient with implicit type conversions, but you can always be explicit using ::
```
SELECT '42' + 1; -- Implicit cast, result is 43
SELECT '42'::INTEGER + 1; -- Explicit cast, result is 43
```
### String/List Slicing: Extract parts of strings and lists using [start:end] or [start:end:step] syntax.
```
SELECT 'DuckDB'[1:4]; -- Returns 'Duck'
SELECT [1, 2, 3, 4][1:3]; -- Returns [1, 2, 3]
```
### Simple List/Struct/Map/Array Creation: Create complex types using intuitive syntax.
In a SELECT statement:
```
SELECT [1, 2, 3] AS my_list, {{'a': 1, 'b': 'text'}} AS my_struct, MAP([1,2],['one','two']) as my_map;
```
When creating a table:
```
CREATE TABLE data (
my_list INTEGER[],
my_struct STRUCT(a INTEGER, b TEXT),
my_map MAP(INTEGER, VARCHAR),
my_array INTEGER[3]
);
```
### Timestamp Conversions and Extraction: Convert between text and timestamps, and extract date parts.
```
SELECT strftime(NOW(), '%Y-%m-%d'); -- Current date as 'YYYY-MM-DD'
SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP; -- String to timestamp
SELECT EXTRACT(YEAR FROM DATE '2023-07-23'); -- Extract year
```
### Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses.
```
SELECT a + b AS total
FROM my_table
WHERE total > 10
GROUP BY total
HAVING total < 20;
```
### List Comprehensions: Generate lists using expressions similar to Python list comprehensions.
```
SELECT [x*2 FOR x IN [1, 2, 3]]; -- Returns [2, 4, 6]
```
### Function Chaining: Chain multiple function calls together using the dot (.) operator.
```
SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB'
```
### Regular Expressions: DuckDB has built-in functions for regex matching, replacement, and extraction.
```
SELECT regexp_matches('DuckDB', 'Duck'); -- Returns true
SELECT regexp_replace('DuckDB', 'Duck', 'Goose'); -- Returns 'GooseDB'
SELECT regexp_extract('DuckDB', '(\w+)(DB)', 1); -- Returns 'Duck'
```
### Sampling: Quickly get a subset of your data with SAMPLE or TABLESAMPLE.
```
SELECT * FROM large_table USING SAMPLE 10%; -- Random 10% sample
SELECT * FROM large_table TABLESAMPLE BERNOULLI(10); -- Bernoulli sampling
```
### ATTACH and Access: Attach external databases and reference their objects using databasename.table_name syntax.
```
ATTACH 'my_database.duckdb' AS mydb;
SELECT * FROM mydb.my_table;
```
### SUMMARIZE: Get summary statistics (min, max, unique count, average, standard deviation, quartiles, and count) of a table.
```
SUMMARIZE table_name;
```
### DESCRIBE: Get schema of a table (column_name, column_type, null, key, default, extra).
```
DESCRIBE table_name;
```
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Please write a DuckDB SQL query that answers the user's question or instruction. Use DuckDB-specific syntax if possible.
Answer:
```
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterPhi(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """<|endoftext|><|user|>
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here are some DuckDB SQL syntax specifics you should be aware of:
- DuckDB use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR), my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Write a DuckDB SQL query for the given question!<|end|>
<|assistant|>
```sql
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterGPTmini(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """Schema:
```sql
{schema}
```
Question:
{question}
Write a valid DuckDB SQL query to answer the question!
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterPhiAzure(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Write a DuckDB SQL query for the given question!
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterCustom(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = ""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstNoShorthandFormatter(DuckDBInstFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """### Instruction:\n{instruction}\n\n### Input:\n{input}{context}\n### Question:\n{question}\n\n### Response:\n"""
INSTRUCTION_TEMPLATE = """Your task is to generate valid duckdb SQL to answer the following question{has_schema}""" # noqa: E501
class DuckDBChat:
"""DuckDB Inst class."""
table_sep: str = "\n\n"
shuffle_table_order: bool = True
_cache: dict[tuple[str, str, str], list[str]] = {}
clean_whitespace = False
model = None
@classmethod
def format_table(cls, table: Table) -> str:
"""Get table format."""
table_fmt = []
for col in table.columns or []:
# This is technically an incorrect type, but it should be a catchall word
table_fmt.append(f" {col.name} {col.dtype or 'any'}")
if table_fmt:
all_cols = ",\n".join(table_fmt)
create_tbl = f"CREATE TABLE {table.name} (\n{all_cols}\n)"
else:
create_tbl = f"CREATE TABLE {table.name}"
return create_tbl
@classmethod
def format_all_tables(cls, tables: list[Table], instruction: str) -> list[dict]:
"""Get all tables format."""
if not cls.model:
cls.model = Manifest(
engine="gpt-3.5-turbo",
client_name="openaichat",
cache_name="sqlite",
cache_connection=".manifest.sqlite",
)
table_texts = [cls.format_table(table) for table in tables]
full_schema = cls.table_sep.join(table_texts)
prompt = f"""SQL schema of my database:
{full_schema}
Explain in a few sentences what the data is about:
"""
messages = [
{
"role": "system",
"content": "You are a helpful assistant that can generate an human redable summary of database content based on the schema.",
},
{"role": "user", "content": prompt},
]
explanation = cls.model.run(messages, temperature=0)
messages.append({"role": "assistant", "content": explanation})
return messages[1:]
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n\nHere is additional documentation about DuckDB that could be useful.\n--------\n{context_str}\n--------\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: list[dict],
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
prompt = f"""Now output a single SQL query without any explanation and do not add anything
to the query that was not part of the question, also do not use markdown. Make sure to only
use information provided in the prompt, or tables and columns from the schema above and write a query to answer the question.{context_text}\n\nMy quesiton is \n`{instruction}`\n\nGenerate the DuckDB specific SQL query:""" # noqa: E501
messages = [
{
"role": "system",
"content": "You are a helpful assistant that can generate DuckDB sql queries, which is a superset of Postgresql, based on the user input. You do not respond with any human readable text, only SQL code.",
},
*table_text,
{"role": "user", "content": prompt},
]
return messages
@classmethod
def format_model_output(cls, output_sql: str, prompt: str) -> str:
"""Format model output."""
return output_sql
@classmethod
def format_gold_output(cls, output_sql: str) -> str:
"""Format gold output for demonstration."""
return output_sql
|