update gradio app
Browse files
app.py
CHANGED
@@ -1,14 +1,101 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import spaces
|
3 |
import torch
|
|
|
|
|
4 |
|
5 |
zero = torch.Tensor([0]).cuda()
|
6 |
-
print(zero.device)
|
7 |
|
8 |
@spaces.GPU
|
9 |
-
def
|
10 |
-
print(zero.device)
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
|
14 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import subprocess
|
3 |
import spaces
|
4 |
import torch
|
5 |
+
import os
|
6 |
+
import re
|
7 |
|
8 |
zero = torch.Tensor([0]).cuda()
|
9 |
+
print(zero.device) # <-- 'cpu' 🤔
|
10 |
|
11 |
@spaces.GPU
|
12 |
+
def run_evaluation(model_name):
|
13 |
+
print(zero.device) # <-- 'cuda:0' 🤗
|
14 |
+
|
15 |
+
results = []
|
16 |
+
|
17 |
+
# Use the secret HF token from the Hugging Face space
|
18 |
+
if "HF_TOKEN" not in os.environ:
|
19 |
+
return "Error: HF_TOKEN not found in environment variables."
|
20 |
+
|
21 |
+
manifest_process = None
|
22 |
+
try:
|
23 |
+
# Start manifest server in background with explicit CUDA_VISIBLE_DEVICES
|
24 |
+
manifest_cmd = f"""
|
25 |
+
CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} cd duckdb-nsql/ &&
|
26 |
+
python -m manifest.api.app
|
27 |
+
--model_type huggingface
|
28 |
+
--model_generation_type text-generation
|
29 |
+
--model_name_or_path {model_name}
|
30 |
+
--fp16
|
31 |
+
--device 0
|
32 |
+
"""
|
33 |
+
manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
34 |
+
results.append("Started manifest server in background.")
|
35 |
+
|
36 |
+
# Run inference
|
37 |
+
inference_cmd = f"""
|
38 |
+
cd duckdb-nsql/ &&
|
39 |
+
python eval/predict.py
|
40 |
+
predict
|
41 |
+
eval/data/dev.json
|
42 |
+
eval/data/tables.json
|
43 |
+
--output-dir output/
|
44 |
+
--stop-tokens ';'
|
45 |
+
--overwrite-manifest
|
46 |
+
--manifest-client huggingface
|
47 |
+
--manifest-connection http://localhost:5000
|
48 |
+
--prompt-format duckdbinstgraniteshort
|
49 |
+
"""
|
50 |
+
inference_result = subprocess.run(inference_cmd, shell=True, check=True, capture_output=True, text=True)
|
51 |
+
results.append("Inference completed.")
|
52 |
+
|
53 |
+
# Extract JSON file path from inference output
|
54 |
+
json_path_match = re.search(r'(.*\.json)', inference_result.stdout)
|
55 |
+
if not json_path_match:
|
56 |
+
raise ValueError("Could not find JSON file path in inference output")
|
57 |
+
json_file = os.path.basename(json_path_match.group(1))
|
58 |
+
results.append(f"Generated JSON file: {json_file}")
|
59 |
+
|
60 |
+
# Run evaluation
|
61 |
+
eval_cmd = f"""
|
62 |
+
cd duckdb-nsql/ &&
|
63 |
+
python eval/evaluate.py evaluate
|
64 |
+
--gold eval/data/dev.json
|
65 |
+
--db eval/data/databases/
|
66 |
+
--tables eval/data/tables.json
|
67 |
+
--output-dir output/
|
68 |
+
--pred output/{json_file}
|
69 |
+
"""
|
70 |
+
eval_result = subprocess.run(eval_cmd, shell=True, check=True, capture_output=True, text=True)
|
71 |
+
|
72 |
+
# Extract and format metrics from eval output
|
73 |
+
metrics = eval_result.stdout
|
74 |
+
if metrics:
|
75 |
+
results.append(f"Evaluation completed:\n{metrics}")
|
76 |
+
else:
|
77 |
+
results.append("Evaluation completed, but get metrics.")
|
78 |
+
|
79 |
+
except subprocess.CalledProcessError as e:
|
80 |
+
results.append(f"Error occurred: {str(e)}")
|
81 |
+
results.append(f"Command output: {e.output}")
|
82 |
+
except Exception as e:
|
83 |
+
results.append(f"An unexpected error occurred: {str(e)}")
|
84 |
+
finally:
|
85 |
+
# Terminate the background manifest server
|
86 |
+
if manifest_process:
|
87 |
+
manifest_process.terminate()
|
88 |
+
results.append("Terminated manifest server.")
|
89 |
+
|
90 |
+
return "\n\n".join(results)
|
91 |
+
|
92 |
+
with gr.Blocks() as demo:
|
93 |
+
gr.Markdown("# DuckDB-NSQL Evaluation App")
|
94 |
+
|
95 |
+
model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)")
|
96 |
+
start_btn = gr.Button("Start Evaluation")
|
97 |
+
output = gr.Textbox(label="Output", lines=20)
|
98 |
+
|
99 |
+
start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=output)
|
100 |
|
|
|
101 |
demo.launch()
|