"""Google client.""" import copy import logging import os from typing import Any, Dict, Optional, Type from manifest.clients.google import GoogleClient, get_project_id from manifest.request import LMRequest, Request logger = logging.getLogger(__name__) # https://cloud.google.com/vertex-ai/docs/generative-ai/start/quickstarts/api-quickstart GOOGLE_ENGINES = { "chat-bison", } class GoogleChatClient(GoogleClient): """GoogleChat client.""" # User param -> (client param, default value) PARAMS = { "engine": ("model", "chat-bison"), "temperature": ("temperature", 1.0), "max_tokens": ("maxOutputTokens", 10), "top_p": ("topP", 1.0), "top_k": ("topK", 1), "batch_size": ("batch_size", 20), } REQUEST_CLS: Type[Request] = LMRequest NAME = "googlechat" IS_CHAT = True def connect( self, connection_str: Optional[str] = None, client_args: Dict[str, Any] = {}, ) -> None: """ Connect to the GoogleVertex API. connection_str is passed as default GOOGLE_API_KEY if variable not set. Args: connection_str: connection string. client_args: client arguments. """ connection_parts = connection_str.split("::") if len(connection_parts) == 1: self.api_key = connection_parts[0] elif len(connection_parts) == 2: self.api_key, self.project_id = connection_parts else: raise ValueError( "Invalid connection string. " "Must be either API_KEY or API_KEY::PROJECT_ID" ) self.api_key = self.api_key or os.environ.get("GOOGLE_API_KEY") if self.api_key is None: raise ValueError( "GoogleVertex API key not set. Set GOOGLE_API_KEY environment " "variable or pass through `client_connection`. This can be " "found by running `gcloud auth print-access-token`" ) self.project_id = ( self.project_id or os.environ.get("GOOGLE_PROJECT_ID") or get_project_id() ) if self.project_id is None: raise ValueError("GoogleVertex project ID not set. Set GOOGLE_PROJECT_ID") self.host = f"https://us-central1-aiplatform.googleapis.com/v1/projects/{self.project_id}/locations/us-central1/publishers/google/models" # noqa: E501 for key in self.PARAMS: setattr(self, key, client_args.pop(key, self.PARAMS[key][1])) if getattr(self, "engine") not in GOOGLE_ENGINES: raise ValueError( f"Invalid engine {getattr(self, 'engine')}. Must be {GOOGLE_ENGINES}." ) def supports_batch_inference(self) -> bool: """Return whether the client supports batch inference.""" return False def preprocess_request_params(self, request: Dict[str, Any]) -> Dict[str, Any]: """ Preprocess request params. Args: request: request params. Returns: request params. """ # Format for chat model request = copy.deepcopy(request) prompt = request.pop("prompt") if isinstance(prompt, str): messages = [{"author": "user", "content": prompt}] elif isinstance(prompt, list) and isinstance(prompt[0], str): prompt_list = prompt messages = [{"author": "user", "content": prompt} for prompt in prompt_list] elif isinstance(prompt, list) and isinstance(prompt[0], dict): for pmt_dict in prompt: if "author" not in pmt_dict or "content" not in pmt_dict: raise ValueError( "Prompt must be list of dicts with 'author' and 'content' " f"keys. Got {prompt}." ) messages = prompt else: raise ValueError( "Prompt must be string, list of strings, or list of dicts." f"Got {prompt}" ) new_request = { "instances": [{"messages": messages}], "parameters": request, } return super(GoogleClient, self).preprocess_request_params(new_request) def postprocess_response(self, response: Dict, request: Dict) -> Dict[str, Any]: """ Validate response as dict. Assumes response is dict { "candidates": [ { "safetyAttributes": { "categories": ["Violent", "Sexual"], "blocked": false, "scores": [0.1, 0.1] }, "author": "1", "content": "SELECT * FROM "WWW";" } ] } Args: response: response request: request Return: response as dict """ google_predictions = response.pop("predictions") new_response = { "choices": [ { "text": prediction["candidates"][0]["content"], } for prediction in google_predictions ] } return super(GoogleClient, self).postprocess_response(new_response, request)