Basma Boussaha commited on
Commit
ae5099a
·
1 Parent(s): b738c66

leaderboard

Browse files
Files changed (5) hide show
  1. app.py +14 -15
  2. src/about.py +13 -14
  3. src/display/utils.py +60 -68
  4. src/leaderboard/read_evals.py +97 -139
  5. src/populate.py +4 -4
app.py CHANGED
@@ -14,15 +14,11 @@ from src.about import (
14
  )
15
  from src.display.css_html_js import custom_css
16
  from src.display.utils import (
17
- BENCHMARK_COLS,
18
  COLS,
19
  EVAL_COLS,
20
  EVAL_TYPES,
21
  AutoEvalColumn,
22
- ModelType,
23
  fields,
24
- WeightType,
25
- Precision
26
  )
27
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
@@ -34,14 +30,14 @@ def restart_space():
34
 
35
  ### Space initialisation
36
  try:
37
- print(EVAL_REQUESTS_PATH)
38
  snapshot_download(
39
  repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
  )
41
  except Exception:
42
  restart_space()
43
  try:
44
- print(EVAL_RESULTS_PATH)
45
  snapshot_download(
46
  repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
  )
@@ -49,7 +45,7 @@ except Exception:
49
  restart_space()
50
 
51
 
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
 
54
  (
55
  finished_eval_queue_df,
@@ -63,12 +59,15 @@ def init_leaderboard(dataframe):
63
  return Leaderboard(
64
  value=dataframe,
65
  datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
- ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
 
 
 
72
  hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
  # filter_columns=[
74
  # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
@@ -85,14 +84,14 @@ def init_leaderboard(dataframe):
85
  # ),
86
  # ],
87
  # bool_checkboxgroup_label="Hide models",
88
- interactive=False,
89
  )
90
 
91
 
92
  demo = gr.Blocks(css=custom_css)
93
  with demo:
94
  gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
 
97
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
  with gr.TabItem("🏅 E2LMC Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
 
14
  )
15
  from src.display.css_html_js import custom_css
16
  from src.display.utils import (
 
17
  COLS,
18
  EVAL_COLS,
19
  EVAL_TYPES,
20
  AutoEvalColumn,
 
21
  fields,
 
 
22
  )
23
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
24
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
 
30
 
31
  ### Space initialisation
32
  try:
33
+ # print(EVAL_REQUESTS_PATH)
34
  snapshot_download(
35
  repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
36
  )
37
  except Exception:
38
  restart_space()
39
  try:
40
+ # print(EVAL_RESULTS_PATH)
41
  snapshot_download(
42
  repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
43
  )
 
45
  restart_space()
46
 
47
 
48
+ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS)
49
 
50
  (
51
  finished_eval_queue_df,
 
59
  return Leaderboard(
60
  value=dataframe,
61
  datatype=[c.type for c in fields(AutoEvalColumn)],
62
+ # select_columns=SelectColumns(
63
+ # default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
64
+ # cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
65
+ # label="Select Columns to Display:",
66
+ # ),
67
+ search_columns=[
68
+ AutoEvalColumn.team.name,
69
+ AutoEvalColumn.submitter.name,
70
+ ],
71
  hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
72
  # filter_columns=[
73
  # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
 
84
  # ),
85
  # ],
86
  # bool_checkboxgroup_label="Hide models",
87
+ interactive=True,
88
  )
89
 
90
 
91
  demo = gr.Blocks(css=custom_css)
92
  with demo:
93
  gr.HTML(TITLE)
94
+ # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
95
 
96
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
97
  with gr.TabItem("🏅 E2LMC Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
src/about.py CHANGED
@@ -1,31 +1,30 @@
1
  from dataclasses import dataclass
2
  from enum import Enum
3
 
4
- @dataclass
5
- class Task:
6
- benchmark: str
7
- metric: str
8
- col_name: str
9
 
10
 
11
- # Select your tasks here
12
- # ---------------------------------------------------
13
- class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
17
 
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
  # ---------------------------------------------------
20
 
21
 
22
 
23
  # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
 
26
  # What does your leaderboard evaluate?
27
  INTRODUCTION_TEXT = """
28
- Intro text
29
  """
30
 
31
  # Which evaluations are you running? how can people reproduce what you have?
 
1
  from dataclasses import dataclass
2
  from enum import Enum
3
 
4
+ # @dataclass
5
+ # class Task:
6
+ # benchmark: str
7
+ # metric: str
8
+ # col_name: str
9
 
10
 
11
+ # # Select your tasks here
12
+ # # ---------------------------------------------------
13
+ # class Tasks(Enum):
14
+ # # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
+ # task0 = Task("anli_r1", "acc", "ANLI")
16
+ # task1 = Task("logiqa", "acc_norm", "LogiQA")
17
 
18
+ # NUM_FEWSHOT = 0 # Change with your few shot
19
  # ---------------------------------------------------
20
 
21
 
22
 
23
  # Your leaderboard name
24
+ TITLE = """<h1 align="center" id="space-title">NeurIPS 2025 E2LM Competition: Early Training Evaluation of Language Models Leaderboard</h1>"""
25
 
26
  # What does your leaderboard evaluate?
27
  INTRODUCTION_TEXT = """
 
28
  """
29
 
30
  # Which evaluations are you running? how can people reproduce what you have?
src/display/utils.py CHANGED
@@ -3,8 +3,6 @@ from enum import Enum
3
 
4
  import pandas as pd
5
 
6
- from src.about import Tasks
7
-
8
  def fields(raw_class):
9
  return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
 
@@ -23,22 +21,16 @@ class ColumnContent:
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
25
  # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
- for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
- # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
 
43
  # We use make dataclass to dynamically fill the scores from Tasks
44
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@@ -46,59 +38,59 @@ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=
46
  ## For the queue columns in the submission tab
47
  @dataclass(frozen=True)
48
  class EvalQueueColumn: # Queue column
49
- model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
  precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
  status = ColumnContent("status", "str", True)
55
 
56
  ## All the model information that we might need
57
- @dataclass
58
- class ModelDetails:
59
- name: str
60
- display_name: str = ""
61
- symbol: str = "" # emoji
62
-
63
-
64
- class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
- Unknown = ModelDetails(name="", symbol="?")
70
-
71
- def to_str(self, separator=" "):
72
- return f"{self.value.symbol}{separator}{self.value.name}"
73
-
74
- @staticmethod
75
- def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
- return ModelType.Unknown
85
-
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- Unknown = ModelDetails("?")
95
-
96
- def from_str(precision):
97
- if precision in ["torch.float16", "float16"]:
98
- return Precision.float16
99
- if precision in ["torch.bfloat16", "bfloat16"]:
100
- return Precision.bfloat16
101
- return Precision.Unknown
102
 
103
  # Column selection
104
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
@@ -106,5 +98,5 @@ COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
106
  EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
107
  EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
108
 
109
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
110
 
 
3
 
4
  import pandas as pd
5
 
 
 
6
  def fields(raw_class):
7
  return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
8
 
 
21
  ## Leaderboard columns
22
  auto_eval_column_dict = []
23
  # Init
24
+ auto_eval_column_dict.append(["submission_hash", ColumnContent, ColumnContent("Submission Hash", "str", True, never_hidden=True)])
25
+ auto_eval_column_dict.append(["submitter", ColumnContent, ColumnContent("Submitter", "str", True, never_hidden=True)])
26
+ auto_eval_column_dict.append(["description", ColumnContent, ColumnContent("Description", "str", True, never_hidden=True)])
27
+ auto_eval_column_dict.append(["team", ColumnContent, ColumnContent("Team", "str", True, never_hidden=True)])
28
+ auto_eval_column_dict.append(["submitted_at", ColumnContent, ColumnContent("Submission Time", "str", True, never_hidden=True)])
29
+ auto_eval_column_dict.append(["consistency_score", ColumnContent, ColumnContent("Consistency Score", "number", True, never_hidden=True)])
30
+ auto_eval_column_dict.append(["evaluation_score", ColumnContent, ColumnContent("Evaluation Score", "number", True, never_hidden=True)])
31
+ # auto_eval_column_dict.append(["score3", ColumnContent, ColumnContent("Score 3", "number", True, never_hidden=True)])
32
+ auto_eval_column_dict.append(["global_score", ColumnContent, ColumnContent("Global Score", "number", True, never_hidden=True)])
33
+
 
 
 
 
 
 
34
 
35
  # We use make dataclass to dynamically fill the scores from Tasks
36
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
 
38
  ## For the queue columns in the submission tab
39
  @dataclass(frozen=True)
40
  class EvalQueueColumn: # Queue column
41
+ submission_hash = ColumnContent("submission_hash", "str", True)
42
+ submitter = ColumnContent("submitter", "str", True)
43
+ team = ColumnContent("team", "bool", True)
44
  precision = ColumnContent("precision", "str", True)
45
+ submitted_at = ColumnContent("submitted_at", "str", True)
46
  status = ColumnContent("status", "str", True)
47
 
48
  ## All the model information that we might need
49
+ # @dataclass
50
+ # class ModelDetails:
51
+ # name: str
52
+ # display_name: str = ""
53
+ # symbol: str = "" # emoji
54
+
55
+
56
+ # class ModelType(Enum):
57
+ # PT = ModelDetails(name="pretrained", symbol="🟢")
58
+ # FT = ModelDetails(name="fine-tuned", symbol="🔶")
59
+ # IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
60
+ # RL = ModelDetails(name="RL-tuned", symbol="🟦")
61
+ # Unknown = ModelDetails(name="", symbol="?")
62
+
63
+ # def to_str(self, separator=" "):
64
+ # return f"{self.value.symbol}{separator}{self.value.name}"
65
+
66
+ # @staticmethod
67
+ # def from_str(type):
68
+ # if "fine-tuned" in type or "🔶" in type:
69
+ # return ModelType.FT
70
+ # if "pretrained" in type or "🟢" in type:
71
+ # return ModelType.PT
72
+ # if "RL-tuned" in type or "🟦" in type:
73
+ # return ModelType.RL
74
+ # if "instruction-tuned" in type or "⭕" in type:
75
+ # return ModelType.IFT
76
+ # return ModelType.Unknown
77
+
78
+ # class WeightType(Enum):
79
+ # Adapter = ModelDetails("Adapter")
80
+ # Original = ModelDetails("Original")
81
+ # Delta = ModelDetails("Delta")
82
+
83
+ # class Precision(Enum):
84
+ # float16 = ModelDetails("float16")
85
+ # bfloat16 = ModelDetails("bfloat16")
86
+ # Unknown = ModelDetails("?")
87
+
88
+ # def from_str(precision):
89
+ # if precision in ["torch.float16", "float16"]:
90
+ # return Precision.float16
91
+ # if precision in ["torch.bfloat16", "bfloat16"]:
92
+ # return Precision.bfloat16
93
+ # return Precision.Unknown
94
 
95
  # Column selection
96
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
 
98
  EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
99
  EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
100
 
101
+ # BENCHMARK_COLS = [t.value.col_name for t in Tasks]
102
 
src/leaderboard/read_evals.py CHANGED
@@ -8,7 +8,7 @@ import dateutil
8
  import numpy as np
9
 
10
  from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
  from src.submission.check_validity import is_model_on_hub
13
 
14
 
@@ -16,21 +16,16 @@ from src.submission.check_validity import is_model_on_hub
16
  class EvalResult:
17
  """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
  """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
 
35
  @classmethod
36
  def init_from_json_file(self, json_filepath):
@@ -38,120 +33,78 @@ class EvalResult:
38
  with open(json_filepath) as fp:
39
  data = json.load(fp)
40
 
41
- config = data.get("config")
42
-
43
- # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
 
110
  def to_dict(self):
111
  """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
  data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
  }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
  return data_dict
133
 
134
 
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
 
156
 
157
  def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
@@ -159,38 +112,43 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
159
  model_result_filepaths = []
160
 
161
  for root, _, files in os.walk(results_path):
 
162
  # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
 
165
 
166
  # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
 
172
  for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
 
174
 
175
- eval_results = {}
176
  for model_result_filepath in model_result_filepaths:
177
  # Creation of result
 
178
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
  # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
 
187
 
188
  results = []
189
- for v in eval_results.values():
190
  try:
191
  v.to_dict() # we test if the dict version is complete
192
  results.append(v)
193
  except KeyError: # not all eval values present
194
  continue
195
 
196
- return results
 
8
  import numpy as np
9
 
10
  from src.display.formatting import make_clickable_model
11
+ from src.display.utils import AutoEvalColumn
12
  from src.submission.check_validity import is_model_on_hub
13
 
14
 
 
16
  class EvalResult:
17
  """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
  """
19
+
20
+ submission_hash: str
21
+ submitter: str = "Unknown" # Who submitted the model, if available
22
+ description: str = "No description provided" # Description of the model, if available
23
+ team: str = "Unknown" # Team or organization behind the model, if available
24
+ submitted_at : str = "" # Date when the model was submitted, if available
25
+ consistency_score: float = 0.0 # Score for the first metric, if available
26
+ evaluation_score: float = 0.0 # Score for the second metric, if
27
+ # score3: float = 0.0 # Score for the third metric, if available
28
+ global_score: float = 0.0 # Global score, if available
 
 
 
 
 
29
 
30
  @classmethod
31
  def init_from_json_file(self, json_filepath):
 
33
  with open(json_filepath) as fp:
34
  data = json.load(fp)
35
 
36
+ for key in data.keys():
37
+ if isinstance(data[key], dict):
38
+ submission_hash = key
39
+ submission_details = data[key]
40
+ if isinstance(submission_details, dict):
41
+ # Extracting details from the submission
42
+ return self(
43
+ submission_hash = submission_hash,
44
+ submitter = submission_details.get("submitter", "Unknown"),
45
+ description = submission_details.get("description", "No description provided"),
46
+ team = submission_details.get("team", "Unknown"),
47
+ submitted_at = submission_details.get("submitted_at", ""),
48
+ consistency_score = submission_details.get("consistency_score", 0.0),
49
+ evaluation_score = submission_details.get("evaluation_score", 0.0),
50
+ # score3 = submission_details.get("score3", 0.0),
51
+ global_score = submission_details.get("global_score", 0.0)
52
+ )
53
+
54
+ # def update_with_request_file(self, requests_path):
55
+ # """Finds the relevant request file for the current model and updates info with it"""
56
+ # request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
57
+
58
+ # try:
59
+ # with open(request_file, "r") as f:
60
+ # request = json.load(f)
61
+ # self.model_type = ModelType.from_str(request.get("model_type", ""))
62
+ # self.weight_type = WeightType[request.get("weight_type", "Original")]
63
+ # self.license = request.get("license", "?")
64
+ # self.likes = request.get("likes", 0)
65
+ # self.num_params = request.get("params", 0)
66
+ # self.date = request.get("submitted_time", "")
67
+ # except Exception:
68
+ # print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
  def to_dict(self):
71
  """Converts the Eval Result to a dict compatible with our dataframe display"""
72
+ # average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
73
  data_dict = {
74
+ # "eval_name": self.eval_name, # not a column, just a save name,
75
+ AutoEvalColumn.submission_hash.name: self.submission_hash,
76
+ AutoEvalColumn.submitter.name: self.submitter,
77
+ AutoEvalColumn.description.name: self.description,
78
+ AutoEvalColumn.team.name: self.team,
79
+ AutoEvalColumn.submitted_at.name: self.submitted_at,
80
+ AutoEvalColumn.consistency_score.name: self.consistency_score,
81
+ AutoEvalColumn.evaluation_score.name: self.evaluation_score,
82
+ # AutoEvalColumn.score3.name: self.score1,
83
+ AutoEvalColumn.global_score.name: self.global_score,
 
 
 
84
  }
 
 
 
 
85
  return data_dict
86
 
87
 
88
+ # def get_request_file_for_model(requests_path, model_name, precision):
89
+ # """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
90
+ # request_files = os.path.join(
91
+ # requests_path,
92
+ # f"{model_name}_eval_request_*.json",
93
+ # )
94
+ # request_files = glob.glob(request_files)
95
+
96
+ # # Select correct request file (precision)
97
+ # request_file = ""
98
+ # request_files = sorted(request_files, reverse=True)
99
+ # for tmp_request_file in request_files:
100
+ # with open(tmp_request_file, "r") as f:
101
+ # req_content = json.load(f)
102
+ # if (
103
+ # req_content["status"] in ["FINISHED"]
104
+ # and req_content["precision"] == precision.split(".")[-1]
105
+ # ):
106
+ # request_file = tmp_request_file
107
+ # return request_file
108
 
109
 
110
  def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
 
112
  model_result_filepaths = []
113
 
114
  for root, _, files in os.walk(results_path):
115
+ # print(files)
116
  # We should only have json files in model results
117
+ # if len(files) == 0 or any([not f.endswith(".json") for f in files]):
118
+ # print(files, "continue")
119
+ # continue
120
 
121
  # Sort the files by date
122
+ # try:
123
+ # files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
124
+ # except dateutil.parser._parser.ParserError:
125
+ # files = [files[-1]]
126
 
127
  for file in files:
128
+ if file.endswith(".json"):
129
+ model_result_filepaths.append(os.path.join(root, file))
130
 
131
+ eval_results = []
132
  for model_result_filepath in model_result_filepaths:
133
  # Creation of result
134
+ # print(model_result_filepath)
135
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
136
+ # eval_result.update_with_request_file(requests_path)
137
+ # print('---------', eval_result)
138
  # Store results of same eval together
139
+ # eval_name = eval_result.eval_name
140
+ # if eval_name in eval_results.keys():
141
+ # eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
142
+ # else:
143
+ # eval_results[eval_name] = eval_result
144
+ eval_results.append(eval_result)
145
 
146
  results = []
147
+ for v in eval_results:
148
  try:
149
  v.to_dict() # we test if the dict version is complete
150
  results.append(v)
151
  except KeyError: # not all eval values present
152
  continue
153
 
154
+ return eval_results
src/populate.py CHANGED
@@ -8,17 +8,17 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
  from src.leaderboard.read_evals import get_raw_eval_results
9
 
10
 
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
  """Creates a dataframe from all the individual experiment results"""
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
  all_data_json = [v.to_dict() for v in raw_data]
15
-
16
  df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
  df = df[cols].round(decimals=2)
19
 
20
  # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
  return df
23
 
24
 
 
8
  from src.leaderboard.read_evals import get_raw_eval_results
9
 
10
 
11
+ def get_leaderboard_df(results_path: str, requests_path: str, cols: list) -> pd.DataFrame:
12
  """Creates a dataframe from all the individual experiment results"""
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
  all_data_json = [v.to_dict() for v in raw_data]
15
+ # print('=========', all_data_json)
16
  df = pd.DataFrame.from_records(all_data_json)
17
+ df = df.sort_values(by=[AutoEvalColumn.global_score.name], ascending=False)
18
  df = df[cols].round(decimals=2)
19
 
20
  # filter out if any of the benchmarks have not been produced
21
+ # df = df[has_no_nan_values(df, benchmark_cols)]
22
  return df
23
 
24