Spaces:
Runtime error
Runtime error
Commit
·
301b1c6
1
Parent(s):
3fceb24
update app
Browse files- .gitignore +2 -1
- README.md +1 -7
- app.py +1 -1
- centroids_resnet50.tv2_in1k_igeood_logits.pkl +3 -0
- imagenet_ood.py +132 -0
.gitignore
CHANGED
|
@@ -138,4 +138,5 @@ dmypy.json
|
|
| 138 |
cython_debug/
|
| 139 |
|
| 140 |
.DS_Store
|
| 141 |
-
.vscode
|
|
|
|
|
|
| 138 |
cython_debug/
|
| 139 |
|
| 140 |
.DS_Store
|
| 141 |
+
.vscode
|
| 142 |
+
data/
|
README.md
CHANGED
|
@@ -16,7 +16,7 @@ Out-of-distribution (OOD) detection is an essential safety measure for machine l
|
|
| 16 |
|
| 17 |
This demo is [online](https://huggingface.co/spaces/edadaltocg/ood-detection) at `https://huggingface.co/spaces/edadaltocg/ood-detection`
|
| 18 |
|
| 19 |
-
## Running Gradio app locally
|
| 20 |
|
| 21 |
1. Install dependencies:
|
| 22 |
|
|
@@ -31,9 +31,3 @@ python app.py
|
|
| 31 |
```
|
| 32 |
|
| 33 |
3. Open the app in your browser at `http://localhost:7860`.
|
| 34 |
-
|
| 35 |
-
## Methods implemented
|
| 36 |
-
|
| 37 |
-
- [ ] [Mahalanobis Distance](https://arxiv.org/abs/1807.03888)
|
| 38 |
-
- [x] [Maximum Softmax Probability](https://arxiv.org/abs/1610.02136)
|
| 39 |
-
- [x] [Energy Based Out-of-Distribution Detection](https://arxiv.org/abs/2010.03759)
|
|
|
|
| 16 |
|
| 17 |
This demo is [online](https://huggingface.co/spaces/edadaltocg/ood-detection) at `https://huggingface.co/spaces/edadaltocg/ood-detection`
|
| 18 |
|
| 19 |
+
## Running Gradio app locally
|
| 20 |
|
| 21 |
1. Install dependencies:
|
| 22 |
|
|
|
|
| 31 |
```
|
| 32 |
|
| 33 |
3. Open the app in your browser at `http://localhost:7860`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -25,7 +25,7 @@ TOPK = 3
|
|
| 25 |
|
| 26 |
# load model
|
| 27 |
print("Loading model...")
|
| 28 |
-
model = timm.create_model("resnet50.tv2_in1k", pretrained=True
|
| 29 |
model.to(device)
|
| 30 |
model.eval()
|
| 31 |
|
|
|
|
| 25 |
|
| 26 |
# load model
|
| 27 |
print("Loading model...")
|
| 28 |
+
model = timm.create_model("resnet50.tv2_in1k", pretrained=True)
|
| 29 |
model.to(device)
|
| 30 |
model.eval()
|
| 31 |
|
centroids_resnet50.tv2_in1k_igeood_logits.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8079b4fc02b6542210d147d98d08b6220372534a18ba7ef9e844b17ab0a1d7e
|
| 3 |
+
size 4000163
|
imagenet_ood.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
from typing import Callable, Optional
|
| 4 |
+
|
| 5 |
+
from torchvision.datasets import ImageFolder
|
| 6 |
+
from torchvision.datasets.utils import check_integrity, download_and_extract_archive, verify_str_arg
|
| 7 |
+
|
| 8 |
+
_logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ImageNetA(ImageFolder):
|
| 12 |
+
"""ImageNetA dataset.
|
| 13 |
+
|
| 14 |
+
- Paper: [https://arxiv.org/abs/1907.07174](https://arxiv.org/abs/1907.07174).
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
base_folder = "imagenet-a"
|
| 18 |
+
url = "https://people.eecs.berkeley.edu/~hendrycks/imagenet-a.tar"
|
| 19 |
+
filename = "imagenet-a.tar"
|
| 20 |
+
tgz_md5 = "c3e55429088dc681f30d81f4726b6595"
|
| 21 |
+
|
| 22 |
+
def __init__(self, root: str, split=None, transform: Optional[Callable] = None, download: bool = False, **kwargs):
|
| 23 |
+
self.root = root
|
| 24 |
+
|
| 25 |
+
if download:
|
| 26 |
+
self.download()
|
| 27 |
+
|
| 28 |
+
if not self._check_integrity():
|
| 29 |
+
raise RuntimeError("Dataset not found or corrupted." + " You can use download=True to download it")
|
| 30 |
+
|
| 31 |
+
super().__init__(root=os.path.join(root, self.base_folder), transform=transform, **kwargs)
|
| 32 |
+
|
| 33 |
+
def _check_exists(self) -> bool:
|
| 34 |
+
return os.path.exists(os.path.join(self.root, self.base_folder))
|
| 35 |
+
|
| 36 |
+
def _check_integrity(self) -> bool:
|
| 37 |
+
return check_integrity(os.path.join(self.root, self.filename), self.tgz_md5)
|
| 38 |
+
|
| 39 |
+
def download(self) -> None:
|
| 40 |
+
if self._check_integrity() and self._check_exists():
|
| 41 |
+
_logger.debug("Files already downloaded and verified")
|
| 42 |
+
return
|
| 43 |
+
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class ImageNetO(ImageNetA):
|
| 47 |
+
"""ImageNetO datasets.
|
| 48 |
+
|
| 49 |
+
Contains unknown classes to ImageNet-1k.
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
- Paper: [https://arxiv.org/abs/1907.07174](https://arxiv.org/abs/1907.07174)
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
base_folder = "imagenet-o"
|
| 56 |
+
url = "https://people.eecs.berkeley.edu/~hendrycks/imagenet-o.tar"
|
| 57 |
+
filename = "imagenet-o.tar"
|
| 58 |
+
tgz_md5 = "86bd7a50c1c4074fb18fc5f219d6d50b"
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class ImageNetR(ImageNetA):
|
| 62 |
+
"""ImageNet-R(endition) dataset.
|
| 63 |
+
|
| 64 |
+
Contains art, cartoons, deviantart, graffiti, embroidery, graphics, origami, paintings,
|
| 65 |
+
patterns, plastic objects,plush objects, sculptures, sketches, tattoos, toys,
|
| 66 |
+
and video game renditions of ImageNet-1k classes.
|
| 67 |
+
|
| 68 |
+
- Paper: [https://arxiv.org/abs/2006.16241](https://arxiv.org/abs/2006.16241)
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
base_folder = "imagenet-r"
|
| 72 |
+
url = "https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar"
|
| 73 |
+
filename = "imagenet-r.tar"
|
| 74 |
+
tgz_md5 = "a61312130a589d0ca1a8fca1f2bd3337"
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class NINCOFull(ImageFolder):
|
| 78 |
+
"""`NINCO` Dataset subset.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
root (string): Root directory of dataset where directory
|
| 82 |
+
exists or will be saved to if download is set to True.
|
| 83 |
+
split (string, optional): The dataset split, not used.
|
| 84 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
| 85 |
+
and returns a transformed version. E.g, `transforms.RandomCrop`.
|
| 86 |
+
download (bool, optional): If true, downloads the dataset from the internet and
|
| 87 |
+
puts it in root directory. If dataset is already downloaded, it is not
|
| 88 |
+
downloaded again.
|
| 89 |
+
**kwargs: Additional arguments passed to :class:`~torchvision.datasets.ImageFolder`.
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
PAPER_URL = "https://arxiv.org/pdf/2306.00826.pdf"
|
| 93 |
+
base_folder = "ninco"
|
| 94 |
+
filename = "NINCO_all.tar.gz"
|
| 95 |
+
file_md5 = "b9ffae324363cd900a81ce3c367cd834"
|
| 96 |
+
url = "https://zenodo.org/record/8013288/files/NINCO_all.tar.gz"
|
| 97 |
+
# size: 15393
|
| 98 |
+
|
| 99 |
+
def __init__(
|
| 100 |
+
self, root: str, split=None, transform: Optional[Callable] = None, download: bool = False, **kwargs
|
| 101 |
+
) -> None:
|
| 102 |
+
self.root = os.path.expanduser(root)
|
| 103 |
+
self.dataset_folder = os.path.join(self.root, self.base_folder)
|
| 104 |
+
self.archive = os.path.join(self.root, self.filename)
|
| 105 |
+
|
| 106 |
+
if download:
|
| 107 |
+
self.download()
|
| 108 |
+
|
| 109 |
+
if not self._check_integrity():
|
| 110 |
+
raise RuntimeError("Dataset not found or corrupted." + " You can use download=True to download it")
|
| 111 |
+
|
| 112 |
+
super().__init__(self.dataset_folder, transform=transform, **kwargs)
|
| 113 |
+
|
| 114 |
+
def _check_integrity(self) -> bool:
|
| 115 |
+
return check_integrity(self.archive, self.file_md5)
|
| 116 |
+
|
| 117 |
+
def _check_exists(self) -> bool:
|
| 118 |
+
return os.path.exists(self.dataset_folder)
|
| 119 |
+
|
| 120 |
+
def download(self) -> None:
|
| 121 |
+
if self._check_integrity() and self._check_exists():
|
| 122 |
+
return
|
| 123 |
+
download_and_extract_archive(
|
| 124 |
+
self.url, download_root=self.root, extract_root=self.dataset_folder, md5=self.file_md5
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
if __name__ == "__main__":
|
| 129 |
+
ImageNetR(root="data", download=True)
|
| 130 |
+
ImageNetO(root="data", download=True)
|
| 131 |
+
ImageNetA(root="data", download=True)
|
| 132 |
+
NINCOFull(root="data", download=True)
|