|
import streamlit as st |
|
from transformers import pipeline, AutoTokenizer |
|
|
|
base="Helsinki-NLP/opus-mt-en-zh" |
|
model="edwinlaw/opus-mt-cantonese-v1" |
|
tokenizer = AutoTokenizer.from_pretrained(base) |
|
|
|
def translate(text, src_lang, tgt_lang): |
|
translator = pipeline( |
|
"translation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
src_lang=src_lang, |
|
tgt_lang=tgt_lang, |
|
) |
|
translated_text = translator(text) |
|
return translated_text |
|
|
|
st.title("Translate English into Cantonese:") |
|
|
|
prompt = st.text_input('English sentence here') |
|
|
|
if prompt: |
|
translation = translate(prompt, 'en', 'yue') |
|
translated_txt = translation[0]['translation_text'] |
|
|
|
st.write(translated_txt) |
|
|
|
with st.expander('Chat History'): |
|
st.info(translated_txt) |
|
|