Spaces:
Runtime error
Runtime error
| import os | |
| from threading import Thread | |
| from typing import Iterator | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from peft import AutoPeftModelForCausalLM | |
| DESCRIPTION = """\ | |
| # Llama 3.2 3B Instruct | |
| Llama 3.2 3B is Meta's latest iteration of open LLMs. | |
| This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following. | |
| For more details, please check [our post](https://huggingface.co/blog/llama32). | |
| """ | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| model_name = "ehristoforu/BigFalcon3-from10B" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, | |
| trust_remote_code=True | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| #peft_model = AutoPeftModelForCausalLM.from_pretrained("ehristoforu/think-lora-qwen-r64") | |
| #merged_model = peft_model.merge_and_unload() | |
| #merged_model.save_pretrained("./coolqwen") | |
| #model.save_pretrained("./coolqwen") | |
| #tokenizer.save_pretrained("./coolqwen") | |
| ''' | |
| from huggingface_hub import HfApi | |
| api = HfApi() | |
| api.upload_folder( | |
| folder_path="./coolqwen", | |
| repo_id="ehristoforu/Falcon3-with-lora-think-7b-it", | |
| repo_type="model", | |
| token=HF_TOKEN, | |
| ) | |
| ''' | |
| def generate( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> Iterator[str]: | |
| conversation = [] | |
| for user, assistant in chat_history: | |
| conversation.extend( | |
| [ | |
| {"role": "user", "content": user}, | |
| {"role": "assistant", "content": assistant}, | |
| ] | |
| ) | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| attention_mask = input_ids["attention_mask"] | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.eos_token_id, | |
| attention_mask=attention_mask, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| num_beams=1, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0.0, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.6, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.2, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["Hello there! How are you doing?"], | |
| ["Can you explain briefly to me what is the Python programming language?"], | |
| ["Explain the plot of Cinderella in a sentence."], | |
| ["How many hours does it take a man to eat a Helicopter?"], | |
| ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
| ], | |
| cache_examples=False, | |
| ) | |
| with gr.Blocks(css="style.css", fill_height=True) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
| chat_interface.render() | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() |