Spaces:
Running
Running
Upload 3 files
Browse files- app.py +151 -0
- requirements.txt +4 -0
- saved_model/combined_analyzer.pkl +3 -0
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# test_preloaded_model.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pickle
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# --- Dependencies needed for the Class Definition ---
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
# --- Define the Class to Hold Both Pipelines ---
|
| 11 |
+
# IMPORTANT: This exact class definition MUST be present here,
|
| 12 |
+
# identical to the one in save_combined_model.py, for unpickling to work.
|
| 13 |
+
class CombinedAnalyzer:
|
| 14 |
+
"""
|
| 15 |
+
A class to encapsulate sentiment analysis and AI text detection pipelines.
|
| 16 |
+
NOTE: This definition must match the one used when saving the .pkl file.
|
| 17 |
+
"""
|
| 18 |
+
def __init__(self, sentiment_model_name="distilbert-base-uncased-finetuned-sst-2-english",
|
| 19 |
+
detector_model_name="Hello-SimpleAI/chatgpt-detector-roberta"):
|
| 20 |
+
print("Initializing CombinedAnalyzer structure...")
|
| 21 |
+
self.device = 0 if torch.cuda.is_available() else -1
|
| 22 |
+
self.sentiment_model_name = sentiment_model_name
|
| 23 |
+
self.detector_model_name = detector_model_name
|
| 24 |
+
self.sentiment_pipeline = None
|
| 25 |
+
self.detector_pipeline = None
|
| 26 |
+
print(f"Class structure defined. Expecting pipelines for models: {sentiment_model_name}, {detector_model_name}")
|
| 27 |
+
|
| 28 |
+
def analyze(self, text):
|
| 29 |
+
"""
|
| 30 |
+
Analyzes the input text for both sentiment and authenticity.
|
| 31 |
+
"""
|
| 32 |
+
if not isinstance(text, str) or not text.strip():
|
| 33 |
+
return "Error: Input text cannot be empty."
|
| 34 |
+
results = []
|
| 35 |
+
# 1. Sentiment Analysis
|
| 36 |
+
if self.sentiment_pipeline and callable(self.sentiment_pipeline):
|
| 37 |
+
try:
|
| 38 |
+
sentiment_result = self.sentiment_pipeline(text)[0]
|
| 39 |
+
sentiment_label = sentiment_result['label']
|
| 40 |
+
sentiment_score = round(sentiment_result['score'] * 100, 2)
|
| 41 |
+
results.append(f"Sentiment: {sentiment_label} (Confidence: {sentiment_score}%)")
|
| 42 |
+
except Exception as e:
|
| 43 |
+
results.append(f"Sentiment Analysis Error in loaded model: {e}")
|
| 44 |
+
else:
|
| 45 |
+
results.append("Sentiment Analysis: Model not available or not callable in loaded object.")
|
| 46 |
+
# 2. AI Text Detection (Authenticity)
|
| 47 |
+
if self.detector_pipeline and callable(self.detector_pipeline):
|
| 48 |
+
try:
|
| 49 |
+
detector_result = self.detector_pipeline(text)[0]
|
| 50 |
+
auth_label_raw = detector_result['label']
|
| 51 |
+
auth_score = round(detector_result['score'] * 100, 2)
|
| 52 |
+
if auth_label_raw.lower() in ['chatgpt', 'ai', 'generated']:
|
| 53 |
+
auth_label_display = "Likely AI-Generated"
|
| 54 |
+
elif auth_label_raw.lower() in ['human', 'real']:
|
| 55 |
+
auth_label_display = "Likely Human-Written"
|
| 56 |
+
else:
|
| 57 |
+
auth_label_display = f"Label: {auth_label_raw}"
|
| 58 |
+
results.append(f"Authenticity: {auth_label_display} (Confidence: {auth_score}%)")
|
| 59 |
+
except Exception as e:
|
| 60 |
+
results.append(f"AI Text Detection Error in loaded model: {e}")
|
| 61 |
+
else:
|
| 62 |
+
results.append("Authenticity: AI Text Detector model not available or not callable in loaded object.")
|
| 63 |
+
return "\n".join(results)
|
| 64 |
+
|
| 65 |
+
# --- Load the Model Automatically on Startup ---
|
| 66 |
+
analyzer = None
|
| 67 |
+
pickle_filename = "combined_analyzer.pkl"
|
| 68 |
+
model_dir = "saved_model"
|
| 69 |
+
pickle_filepath = os.path.join(model_dir, pickle_filename)
|
| 70 |
+
model_load_error = None # Store potential loading error message
|
| 71 |
+
|
| 72 |
+
print(f"Attempting to load pre-saved model from: {pickle_filepath}")
|
| 73 |
+
try:
|
| 74 |
+
print("\n--- SECURITY WARNING ---")
|
| 75 |
+
print(f"Loading '{pickle_filepath}'. Unpickling data from untrusted sources is a security risk.")
|
| 76 |
+
print("Ensure this .pkl file was created by you or a trusted source.\n")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(pickle_filepath):
|
| 79 |
+
raise FileNotFoundError(f"Model file not found at {pickle_filepath}")
|
| 80 |
+
with open(pickle_filepath, 'rb') as f:
|
| 81 |
+
analyzer = pickle.load(f)
|
| 82 |
+
if not hasattr(analyzer, 'analyze') or not callable(analyzer.analyze):
|
| 83 |
+
raise TypeError("Loaded object is not a valid analyzer (missing 'analyze' method).")
|
| 84 |
+
else:
|
| 85 |
+
print("Model loaded successfully.")
|
| 86 |
+
sentiment_name = getattr(analyzer, 'sentiment_model_name', 'Unknown')
|
| 87 |
+
detector_name = getattr(analyzer, 'detector_model_name', 'Unknown')
|
| 88 |
+
print(f" -> Sentiment Model: {sentiment_name}")
|
| 89 |
+
print(f" -> Detector Model: {detector_name}")
|
| 90 |
+
|
| 91 |
+
except FileNotFoundError as e:
|
| 92 |
+
model_load_error = f"ERROR loading model: {e}"
|
| 93 |
+
print(model_load_error)
|
| 94 |
+
print("Please ensure 'save_combined_model.py' was run successfully and")
|
| 95 |
+
print(f"the file '{pickle_filename}' exists in the '{model_dir}' directory.")
|
| 96 |
+
except (pickle.UnpicklingError, TypeError, AttributeError) as e:
|
| 97 |
+
model_load_error = f"ERROR loading model: The pickle file might be corrupted, incompatible, or from a different version. Details: {e}"
|
| 98 |
+
print(model_load_error)
|
| 99 |
+
except Exception as e:
|
| 100 |
+
model_load_error = f"An unexpected ERROR occurred during model loading: {e}"
|
| 101 |
+
print(model_load_error)
|
| 102 |
+
|
| 103 |
+
# --- Define the Gradio Analysis Function ---
|
| 104 |
+
def analyze_text_interface(text_input):
|
| 105 |
+
"""Function called by Gradio to perform analysis using the pre-loaded model."""
|
| 106 |
+
if analyzer is None:
|
| 107 |
+
# Use the stored error message if available
|
| 108 |
+
error_msg = model_load_error or f"ERROR: The analyzer model could not be loaded from '{pickle_filepath}'."
|
| 109 |
+
return error_msg
|
| 110 |
+
if not text_input or not text_input.strip():
|
| 111 |
+
return "Please enter some text to analyze."
|
| 112 |
+
print(f"Analyzing text: '{text_input[:60]}...'")
|
| 113 |
+
try:
|
| 114 |
+
results = analyzer.analyze(text_input)
|
| 115 |
+
print("Analysis complete.")
|
| 116 |
+
return results
|
| 117 |
+
except Exception as e:
|
| 118 |
+
print(f"Error during analysis: {e}")
|
| 119 |
+
return f"An error occurred during analysis:\n{e}"
|
| 120 |
+
|
| 121 |
+
# --- Build the Gradio Interface ---
|
| 122 |
+
|
| 123 |
+
# **CORRECTION HERE:** Define the warning message string separately
|
| 124 |
+
warning_message_text = ""
|
| 125 |
+
if analyzer is None:
|
| 126 |
+
# Use newline characters safely outside the f-string expression
|
| 127 |
+
warning_message_text = "\n\n***WARNING: MODEL FAILED TO LOAD. ANALYSIS WILL NOT WORK.***"
|
| 128 |
+
|
| 129 |
+
# Construct the full description string
|
| 130 |
+
description_text = (
|
| 131 |
+
f"Enter text to analyze using the pre-loaded model from '{pickle_filepath}'.\n"
|
| 132 |
+
"Checks for sentiment (Positive/Negative) and predicts if text is Human-Written or AI-Generated."
|
| 133 |
+
f"{warning_message_text}" # Use the variable here
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
interface = gr.Interface(
|
| 137 |
+
fn=analyze_text_interface,
|
| 138 |
+
inputs=gr.Textbox(lines=7, label="Text to Analyze", placeholder="Enter review text here..."),
|
| 139 |
+
outputs=gr.Textbox(lines=7, label="Analysis Results", interactive=False),
|
| 140 |
+
title="Sentiment & Authenticity Analyzer",
|
| 141 |
+
description=description_text, # Use the constructed description string
|
| 142 |
+
allow_flagging='never'
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# --- Launch the Interface ---
|
| 146 |
+
if __name__ == "__main__":
|
| 147 |
+
if analyzer is None:
|
| 148 |
+
print("\n--- Interface launched, but MODEL IS NOT LOADED. Analysis will fail. ---")
|
| 149 |
+
else:
|
| 150 |
+
print("\n--- Launching Gradio Interface with pre-loaded model ---")
|
| 151 |
+
interface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
gradio
|
| 4 |
+
sentencepiece
|
saved_model/combined_analyzer.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e4dd11e04e895a5d1847965f97a25ad79fde1624a1ffe8d5d45c25b07afaaaa
|
| 3 |
+
size 768588802
|