# test_preloaded_model.py import gradio as gr import pickle import os # --- Dependencies needed for the Class Definition --- from transformers import pipeline import torch # --- Define the Class to Hold Both Pipelines --- # IMPORTANT: This exact class definition MUST be present here, # identical to the one in save_combined_model.py, for unpickling to work. class CombinedAnalyzer: """ A class to encapsulate sentiment analysis and AI text detection pipelines. NOTE: This definition must match the one used when saving the .pkl file. """ def __init__(self, sentiment_model_name="distilbert-base-uncased-finetuned-sst-2-english", detector_model_name="Hello-SimpleAI/chatgpt-detector-roberta"): print("Initializing CombinedAnalyzer structure...") self.device = 0 if torch.cuda.is_available() else -1 self.sentiment_model_name = sentiment_model_name self.detector_model_name = detector_model_name self.sentiment_pipeline = None self.detector_pipeline = None print(f"Class structure defined. Expecting pipelines for models: {sentiment_model_name}, {detector_model_name}") def analyze(self, text): """ Analyzes the input text for both sentiment and authenticity. """ if not isinstance(text, str) or not text.strip(): return "Error: Input text cannot be empty." results = [] # 1. Sentiment Analysis if self.sentiment_pipeline and callable(self.sentiment_pipeline): try: sentiment_result = self.sentiment_pipeline(text)[0] sentiment_label = sentiment_result['label'] sentiment_score = round(sentiment_result['score'] * 100, 2) results.append(f"Sentiment: {sentiment_label} (Confidence: {sentiment_score}%)") except Exception as e: results.append(f"Sentiment Analysis Error in loaded model: {e}") else: results.append("Sentiment Analysis: Model not available or not callable in loaded object.") # 2. AI Text Detection (Authenticity) if self.detector_pipeline and callable(self.detector_pipeline): try: detector_result = self.detector_pipeline(text)[0] auth_label_raw = detector_result['label'] auth_score = round(detector_result['score'] * 100, 2) if auth_label_raw.lower() in ['chatgpt', 'ai', 'generated']: auth_label_display = "Likely AI-Generated" elif auth_label_raw.lower() in ['human', 'real']: auth_label_display = "Likely Human-Written" else: auth_label_display = f"Label: {auth_label_raw}" results.append(f"Authenticity: {auth_label_display} (Confidence: {auth_score}%)") except Exception as e: results.append(f"AI Text Detection Error in loaded model: {e}") else: results.append("Authenticity: AI Text Detector model not available or not callable in loaded object.") return "\n".join(results) # --- Load the Model Automatically on Startup --- analyzer = None pickle_filename = "combined_analyzer.pkl" model_dir = "saved_model" pickle_filepath = os.path.join(model_dir, pickle_filename) model_load_error = None # Store potential loading error message print(f"Attempting to load pre-saved model from: {pickle_filepath}") try: print("\n--- SECURITY WARNING ---") print(f"Loading '{pickle_filepath}'. Unpickling data from untrusted sources is a security risk.") print("Ensure this .pkl file was created by you or a trusted source.\n") if not os.path.exists(pickle_filepath): raise FileNotFoundError(f"Model file not found at {pickle_filepath}") with open(pickle_filepath, 'rb') as f: analyzer = pickle.load(f) if not hasattr(analyzer, 'analyze') or not callable(analyzer.analyze): raise TypeError("Loaded object is not a valid analyzer (missing 'analyze' method).") else: print("Model loaded successfully.") sentiment_name = getattr(analyzer, 'sentiment_model_name', 'Unknown') detector_name = getattr(analyzer, 'detector_model_name', 'Unknown') print(f" -> Sentiment Model: {sentiment_name}") print(f" -> Detector Model: {detector_name}") except FileNotFoundError as e: model_load_error = f"ERROR loading model: {e}" print(model_load_error) print("Please ensure 'save_combined_model.py' was run successfully and") print(f"the file '{pickle_filename}' exists in the '{model_dir}' directory.") except (pickle.UnpicklingError, TypeError, AttributeError) as e: model_load_error = f"ERROR loading model: The pickle file might be corrupted, incompatible, or from a different version. Details: {e}" print(model_load_error) except Exception as e: model_load_error = f"An unexpected ERROR occurred during model loading: {e}" print(model_load_error) # --- Define the Gradio Analysis Function --- def analyze_text_interface(text_input): """Function called by Gradio to perform analysis using the pre-loaded model.""" if analyzer is None: # Use the stored error message if available error_msg = model_load_error or f"ERROR: The analyzer model could not be loaded from '{pickle_filepath}'." return error_msg if not text_input or not text_input.strip(): return "Please enter some text to analyze." print(f"Analyzing text: '{text_input[:60]}...'") try: results = analyzer.analyze(text_input) print("Analysis complete.") return results except Exception as e: print(f"Error during analysis: {e}") return f"An error occurred during analysis:\n{e}" # --- Build the Gradio Interface --- # **CORRECTION HERE:** Define the warning message string separately warning_message_text = "" if analyzer is None: # Use newline characters safely outside the f-string expression warning_message_text = "\n\n***WARNING: MODEL FAILED TO LOAD. ANALYSIS WILL NOT WORK.***" # Construct the full description string description_text = ( f"Enter text to analyze using the pre-loaded model from '{pickle_filepath}'.\n" "Checks for sentiment (Positive/Negative) and predicts if text is Human-Written or AI-Generated." f"{warning_message_text}" # Use the variable here ) interface = gr.Interface( fn=analyze_text_interface, inputs=gr.Textbox(lines=7, label="Text to Analyze", placeholder="Enter review text here..."), outputs=gr.Textbox(lines=7, label="Analysis Results", interactive=False), title="Sentiment & Authenticity Analyzer", description=description_text, # Use the constructed description string allow_flagging='never' ) # --- Launch the Interface --- if __name__ == "__main__": if analyzer is None: print("\n--- Interface launched, but MODEL IS NOT LOADED. Analysis will fail. ---") else: print("\n--- Launching Gradio Interface with pre-loaded model ---") interface.launch()