Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import json | |
| import os | |
| import spaces | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import huggingface_hub | |
| import prep_decompiled | |
| description = """# ReSym Test Space | |
| This is a test space of the models from the [ReSym | |
| artifacts](https://github.com/lt-asset/resym). Sadly, at the time I am writing | |
| this, not all of ReSym is publicly available; specifically, the Prolog component | |
| is [not available](https://github.com/lt-asset/resym/issues/2). | |
| This space simply performs inference on the two pretrained models available as | |
| part of the ReSym artifacts. It takes a variable name and some decompiled code | |
| as input, and outputs the variable type and other information. | |
| ## Disclaimer | |
| I'm not a ReSym developer and I may have messed something up. In particular, | |
| you must prompt the variable names in the decompiled code as part of the prompt, | |
| and I reused some of their own code to do this. | |
| ## Todo | |
| * Add field decoding (probably needs Docker) | |
| """ | |
| hf_key = os.environ["HF_TOKEN"] | |
| huggingface_hub.login(token=hf_key) | |
| tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoderbase-3b") | |
| vardecoder_model = AutoModelForCausalLM.from_pretrained( | |
| "ejschwartz/resym-vardecoder", torch_dtype=torch.bfloat16, device_map="auto" | |
| ) | |
| fielddecoder_model = AutoModelForCausalLM.from_pretrained( | |
| "ejschwartz/resym-fielddecoder", torch_dtype=torch.bfloat16, device_map="auto" | |
| ) | |
| example = r"""__int64 __fastcall sub_410D81(__int64 a1, __int64 a2, __int64 a3) | |
| { | |
| int v4; // [rsp+20h] [rbp-20h] BYREF | |
| __int64 v5; // [rsp+28h] [rbp-18h] | |
| if ( !a1 || !a2 || !a3 ) | |
| return 0LL; | |
| v4 = 5; | |
| v5 = a3; | |
| return sub_411142(a1, a2, &v4); | |
| }""" | |
| examples = [ | |
| ex.encode().decode("unicode_escape") for ex in open("examples.txt", "r").readlines() | |
| ] | |
| def infer(code): | |
| splitcode = [s.strip() for s in code.splitlines()] | |
| code = "\n".join(splitcode) | |
| bodyvars = [ | |
| v["name"] for v in prep_decompiled.extract_comments(splitcode) if "name" in v | |
| ] | |
| argvars = [ | |
| v["name"] for v in prep_decompiled.parse_signature(splitcode) if "name" in v | |
| ] | |
| vars = argvars + bodyvars | |
| # comments = prep_decompiled.extract_comments(splitcode) | |
| # sig = prep_decompiled.parse_signature(splitcode) | |
| # print(f"vars {vars}") | |
| varstring = ", ".join([f"`{v}`" for v in vars]) | |
| var_name = vars[0] | |
| # ejs: Yeah, this var_name thing is really bizarre. But look at https://github.com/lt-asset/resym/blob/main/training_src/fielddecoder_inf.py | |
| var_prompt = f"What are the original name and data types of variables {varstring}?\n```\n{code}\n```{var_name}" | |
| print(f"Prompt:\n{var_prompt}") | |
| input_ids = tokenizer.encode(var_prompt, return_tensors="pt").cuda()[ | |
| :, : 8192 - 1024 | |
| ] | |
| var_output = vardecoder_model.generate( | |
| input_ids=input_ids, | |
| max_new_tokens=1024, | |
| num_beams=4, | |
| num_return_sequences=1, | |
| do_sample=False, | |
| early_stopping=False, | |
| pad_token_id=0, | |
| eos_token_id=0, | |
| )[0] | |
| var_output = tokenizer.decode( | |
| var_output[input_ids.size(1) :], | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=True, | |
| ) | |
| field_output = fielddecoder_model.generate( | |
| input_ids=input_ids, | |
| max_new_tokens=1024, | |
| num_beams=4, | |
| num_return_sequences=1, | |
| do_sample=False, | |
| early_stopping=False, | |
| pad_token_id=0, | |
| eos_token_id=0, | |
| )[0] | |
| field_output = tokenizer.decode( | |
| field_output[input_ids.size(1) :], | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=True, | |
| ) | |
| var_output = var_name + ":" + var_output | |
| field_output = var_name + ":" + field_output | |
| return var_output, varstring | |
| demo = gr.Interface( | |
| fn=infer, | |
| inputs=[ | |
| gr.Textbox(lines=10, value=example, label="Hex-Rays Decompilation"), | |
| ], | |
| outputs=[ | |
| gr.Text(label="Var Decoder Output"), | |
| # gr.Text(label="Field Decoder Output"), | |
| gr.Text(label="Generated Variable List"), | |
| ], | |
| description=description, | |
| examples=examples, | |
| ) | |
| demo.launch() | |