File size: 1,366 Bytes
c306582
ca18b17
c306582
ca18b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c306582
 
ca18b17
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
import datasets

# Load NVIDIA’s Llama-Nemotron dataset (public)
dataset = datasets.load_dataset("nvidia/Llama-Nemotron-Post-Training-Dataset-v1", split="train")

# Function to find relevant info from the dataset
def search_dataset(query):
    results = []
    for data in dataset.shuffle(seed=42).select(range(10)):  # Search 10 random samples
        if query.lower() in data["text"].lower():
            results.append(data["text"])
    return "\n\n".join(results) if results else "No relevant data found."

# Function to generate responses
def chat(user_message):
    context = search_dataset(user_message)  # Get relevant dataset content
    system_prompt = "You are Jellyfish AI, an advanced assistant with knowledge from NVIDIA’s dataset."
    return f"{system_prompt}\nContext: {context}\nUser: {user_message}\nJellyfish AI:"

# Gradio UI
with gr.Blocks(fill_height=True) as demo:
    with gr.Sidebar():
        gr.Markdown("# Jellyfish AI 2025 1.0.0")
        gr.Markdown("Powered by NVIDIA’s Llama-Nemotron dataset. No external API needed!")

    gr.Markdown("### Chat with Jellyfish AI")
    user_input = gr.Textbox(label="Your Message")
    output = gr.Textbox(label="Jellyfish AI's Response", interactive=False)

    chat_button = gr.Button("Send")
    chat_button.click(chat, inputs=user_input, outputs=output)

demo.launch()