import gradio as gr import datasets # Load NVIDIA’s Llama-Nemotron dataset (public) dataset = datasets.load_dataset("nvidia/Llama-Nemotron-Post-Training-Dataset-v1", split="train") # Function to find relevant info from the dataset def search_dataset(query): results = [] for data in dataset.shuffle(seed=42).select(range(10)): # Search 10 random samples if query.lower() in data["text"].lower(): results.append(data["text"]) return "\n\n".join(results) if results else "No relevant data found." # Function to generate responses def chat(user_message): context = search_dataset(user_message) # Get relevant dataset content system_prompt = "You are Jellyfish AI, an advanced assistant with knowledge from NVIDIA’s dataset." return f"{system_prompt}\nContext: {context}\nUser: {user_message}\nJellyfish AI:" # Gradio UI with gr.Blocks(fill_height=True) as demo: with gr.Sidebar(): gr.Markdown("# Jellyfish AI 2025 1.0.0") gr.Markdown("Powered by NVIDIA’s Llama-Nemotron dataset. No external API needed!") gr.Markdown("### Chat with Jellyfish AI") user_input = gr.Textbox(label="Your Message") output = gr.Textbox(label="Jellyfish AI's Response", interactive=False) chat_button = gr.Button("Send") chat_button.click(chat, inputs=user_input, outputs=output) demo.launch()