File size: 1,571 Bytes
f542921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
@st.cache_resource
def load_model():
    tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
    model = AutoModelForCausalLM.from_pretrained(
        "meta-llama/Llama-2-7b-chat-hf", 
        device_map="auto", 
        torch_dtype="auto"
    )
    return model, tokenizer

# Initialize
st.title("LLaMA-2 Chatbot")
st.sidebar.title("Configuration")

# Input parameters
max_tokens = st.sidebar.slider("Max Tokens", 50, 1000, 256)
temperature = st.sidebar.slider("Temperature", 0.1, 1.5, 0.7)
model, tokenizer = load_model()

# Chat interface
if "messages" not in st.session_state:
    st.session_state.messages = []

user_input = st.text_input("Your message:", key="input")
if st.button("Send"):
    if user_input:
        st.session_state.messages.append({"role": "user", "content": user_input})

        inputs = tokenizer(
            user_input, return_tensors="pt", truncation=True
        ).to(model.device)
        outputs = model.generate(
            inputs.input_ids,
            max_length=max_tokens,
            temperature=temperature,
            do_sample=True,
        )
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)

        st.session_state.messages.append({"role": "assistant", "content": response})

# Display the conversation
for message in st.session_state.messages:
    role = "User" if message["role"] == "user" else "Assistant"
    st.write(f"**{role}:** {message['content']}")