Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import os | |
| import sys | |
| import tempfile | |
| import random | |
| from transformers import pipeline | |
| import gradio as gr | |
| import torch | |
| import gc | |
| import click | |
| import torchaudio | |
| from glob import glob | |
| import librosa | |
| import numpy as np | |
| from scipy.io import wavfile | |
| import shutil | |
| import time | |
| import json | |
| from model.utils import convert_char_to_pinyin | |
| import signal | |
| import psutil | |
| import platform | |
| import subprocess | |
| from datasets.arrow_writer import ArrowWriter | |
| from datasets import Dataset as Dataset_ | |
| from api import F5TTS | |
| training_process = None | |
| system = platform.system() | |
| python_executable = sys.executable or "python" | |
| tts_api = None | |
| last_checkpoint = "" | |
| last_device = "" | |
| path_data = "data" | |
| device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
| pipe = None | |
| # Load metadata | |
| def get_audio_duration(audio_path): | |
| """Calculate the duration of an audio file.""" | |
| audio, sample_rate = torchaudio.load(audio_path) | |
| num_channels = audio.shape[0] | |
| return audio.shape[1] / (sample_rate * num_channels) | |
| def clear_text(text): | |
| """Clean and prepare text by lowering the case and stripping whitespace.""" | |
| return text.lower().strip() | |
| def get_rms( | |
| y, | |
| frame_length=2048, | |
| hop_length=512, | |
| pad_mode="constant", | |
| ): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py | |
| padding = (int(frame_length // 2), int(frame_length // 2)) | |
| y = np.pad(y, padding, mode=pad_mode) | |
| axis = -1 | |
| # put our new within-frame axis at the end for now | |
| out_strides = y.strides + tuple([y.strides[axis]]) | |
| # Reduce the shape on the framing axis | |
| x_shape_trimmed = list(y.shape) | |
| x_shape_trimmed[axis] -= frame_length - 1 | |
| out_shape = tuple(x_shape_trimmed) + tuple([frame_length]) | |
| xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides) | |
| if axis < 0: | |
| target_axis = axis - 1 | |
| else: | |
| target_axis = axis + 1 | |
| xw = np.moveaxis(xw, -1, target_axis) | |
| # Downsample along the target axis | |
| slices = [slice(None)] * xw.ndim | |
| slices[axis] = slice(0, None, hop_length) | |
| x = xw[tuple(slices)] | |
| # Calculate power | |
| power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True) | |
| return np.sqrt(power) | |
| class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py | |
| def __init__( | |
| self, | |
| sr: int, | |
| threshold: float = -40.0, | |
| min_length: int = 2000, | |
| min_interval: int = 300, | |
| hop_size: int = 20, | |
| max_sil_kept: int = 2000, | |
| ): | |
| if not min_length >= min_interval >= hop_size: | |
| raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size") | |
| if not max_sil_kept >= hop_size: | |
| raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size") | |
| min_interval = sr * min_interval / 1000 | |
| self.threshold = 10 ** (threshold / 20.0) | |
| self.hop_size = round(sr * hop_size / 1000) | |
| self.win_size = min(round(min_interval), 4 * self.hop_size) | |
| self.min_length = round(sr * min_length / 1000 / self.hop_size) | |
| self.min_interval = round(min_interval / self.hop_size) | |
| self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) | |
| def _apply_slice(self, waveform, begin, end): | |
| if len(waveform.shape) > 1: | |
| return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)] | |
| else: | |
| return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)] | |
| # @timeit | |
| def slice(self, waveform): | |
| if len(waveform.shape) > 1: | |
| samples = waveform.mean(axis=0) | |
| else: | |
| samples = waveform | |
| if samples.shape[0] <= self.min_length: | |
| return [waveform] | |
| rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0) | |
| sil_tags = [] | |
| silence_start = None | |
| clip_start = 0 | |
| for i, rms in enumerate(rms_list): | |
| # Keep looping while frame is silent. | |
| if rms < self.threshold: | |
| # Record start of silent frames. | |
| if silence_start is None: | |
| silence_start = i | |
| continue | |
| # Keep looping while frame is not silent and silence start has not been recorded. | |
| if silence_start is None: | |
| continue | |
| # Clear recorded silence start if interval is not enough or clip is too short | |
| is_leading_silence = silence_start == 0 and i > self.max_sil_kept | |
| need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length | |
| if not is_leading_silence and not need_slice_middle: | |
| silence_start = None | |
| continue | |
| # Need slicing. Record the range of silent frames to be removed. | |
| if i - silence_start <= self.max_sil_kept: | |
| pos = rms_list[silence_start : i + 1].argmin() + silence_start | |
| if silence_start == 0: | |
| sil_tags.append((0, pos)) | |
| else: | |
| sil_tags.append((pos, pos)) | |
| clip_start = pos | |
| elif i - silence_start <= self.max_sil_kept * 2: | |
| pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin() | |
| pos += i - self.max_sil_kept | |
| pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start | |
| pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept | |
| if silence_start == 0: | |
| sil_tags.append((0, pos_r)) | |
| clip_start = pos_r | |
| else: | |
| sil_tags.append((min(pos_l, pos), max(pos_r, pos))) | |
| clip_start = max(pos_r, pos) | |
| else: | |
| pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start | |
| pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept | |
| if silence_start == 0: | |
| sil_tags.append((0, pos_r)) | |
| else: | |
| sil_tags.append((pos_l, pos_r)) | |
| clip_start = pos_r | |
| silence_start = None | |
| # Deal with trailing silence. | |
| total_frames = rms_list.shape[0] | |
| if silence_start is not None and total_frames - silence_start >= self.min_interval: | |
| silence_end = min(total_frames, silence_start + self.max_sil_kept) | |
| pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start | |
| sil_tags.append((pos, total_frames + 1)) | |
| # Apply and return slices. | |
| ####ι³ι’+θ΅·ε§ζΆι΄+η»ζ’ζΆι΄ | |
| if len(sil_tags) == 0: | |
| return [[waveform, 0, int(total_frames * self.hop_size)]] | |
| else: | |
| chunks = [] | |
| if sil_tags[0][0] > 0: | |
| chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)]) | |
| for i in range(len(sil_tags) - 1): | |
| chunks.append( | |
| [ | |
| self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]), | |
| int(sil_tags[i][1] * self.hop_size), | |
| int(sil_tags[i + 1][0] * self.hop_size), | |
| ] | |
| ) | |
| if sil_tags[-1][1] < total_frames: | |
| chunks.append( | |
| [ | |
| self._apply_slice(waveform, sil_tags[-1][1], total_frames), | |
| int(sil_tags[-1][1] * self.hop_size), | |
| int(total_frames * self.hop_size), | |
| ] | |
| ) | |
| return chunks | |
| # terminal | |
| def terminate_process_tree(pid, including_parent=True): | |
| try: | |
| parent = psutil.Process(pid) | |
| except psutil.NoSuchProcess: | |
| # Process already terminated | |
| return | |
| children = parent.children(recursive=True) | |
| for child in children: | |
| try: | |
| os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL | |
| except OSError: | |
| pass | |
| if including_parent: | |
| try: | |
| os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL | |
| except OSError: | |
| pass | |
| def terminate_process(pid): | |
| if system == "Windows": | |
| cmd = f"taskkill /t /f /pid {pid}" | |
| os.system(cmd) | |
| else: | |
| terminate_process_tree(pid) | |
| def start_training( | |
| dataset_name="", | |
| exp_name="F5TTS_Base", | |
| learning_rate=1e-4, | |
| batch_size_per_gpu=400, | |
| batch_size_type="frame", | |
| max_samples=64, | |
| grad_accumulation_steps=1, | |
| max_grad_norm=1.0, | |
| epochs=11, | |
| num_warmup_updates=200, | |
| save_per_updates=400, | |
| last_per_steps=800, | |
| finetune=True, | |
| ): | |
| global training_process, tts_api | |
| if tts_api is not None: | |
| del tts_api | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| tts_api = None | |
| path_project = os.path.join(path_data, dataset_name + "_pinyin") | |
| if not os.path.isdir(path_project): | |
| yield ( | |
| f"There is not project with name {dataset_name}", | |
| gr.update(interactive=True), | |
| gr.update(interactive=False), | |
| ) | |
| return | |
| file_raw = os.path.join(path_project, "raw.arrow") | |
| if not os.path.isfile(file_raw): | |
| yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False) | |
| return | |
| # Check if a training process is already running | |
| if training_process is not None: | |
| return "Train run already!", gr.update(interactive=False), gr.update(interactive=True) | |
| yield "start train", gr.update(interactive=False), gr.update(interactive=False) | |
| # Command to run the training script with the specified arguments | |
| cmd = ( | |
| f"accelerate launch finetune-cli.py --exp_name {exp_name} " | |
| f"--learning_rate {learning_rate} " | |
| f"--batch_size_per_gpu {batch_size_per_gpu} " | |
| f"--batch_size_type {batch_size_type} " | |
| f"--max_samples {max_samples} " | |
| f"--grad_accumulation_steps {grad_accumulation_steps} " | |
| f"--max_grad_norm {max_grad_norm} " | |
| f"--epochs {epochs} " | |
| f"--num_warmup_updates {num_warmup_updates} " | |
| f"--save_per_updates {save_per_updates} " | |
| f"--last_per_steps {last_per_steps} " | |
| f"--dataset_name {dataset_name}" | |
| ) | |
| if finetune: | |
| cmd += f" --finetune {finetune}" | |
| print(cmd) | |
| try: | |
| # Start the training process | |
| training_process = subprocess.Popen(cmd, shell=True) | |
| time.sleep(5) | |
| yield "train start", gr.update(interactive=False), gr.update(interactive=True) | |
| # Wait for the training process to finish | |
| training_process.wait() | |
| time.sleep(1) | |
| if training_process is None: | |
| text_info = "train stop" | |
| else: | |
| text_info = "train complete !" | |
| except Exception as e: # Catch all exceptions | |
| # Ensure that we reset the training process variable in case of an error | |
| text_info = f"An error occurred: {str(e)}" | |
| training_process = None | |
| yield text_info, gr.update(interactive=True), gr.update(interactive=False) | |
| def stop_training(): | |
| global training_process | |
| if training_process is None: | |
| return "Train not run !", gr.update(interactive=True), gr.update(interactive=False) | |
| terminate_process_tree(training_process.pid) | |
| training_process = None | |
| return "train stop", gr.update(interactive=True), gr.update(interactive=False) | |
| def create_data_project(name): | |
| name += "_pinyin" | |
| os.makedirs(os.path.join(path_data, name), exist_ok=True) | |
| os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True) | |
| def transcribe(file_audio, language="english"): | |
| global pipe | |
| if pipe is None: | |
| pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model="openai/whisper-large-v3-turbo", | |
| torch_dtype=torch.float16, | |
| device=device, | |
| ) | |
| text_transcribe = pipe( | |
| file_audio, | |
| chunk_length_s=30, | |
| batch_size=128, | |
| generate_kwargs={"task": "transcribe", "language": language}, | |
| return_timestamps=False, | |
| )["text"].strip() | |
| return text_transcribe | |
| def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()): | |
| name_project += "_pinyin" | |
| path_project = os.path.join(path_data, name_project) | |
| path_dataset = os.path.join(path_project, "dataset") | |
| path_project_wavs = os.path.join(path_project, "wavs") | |
| file_metadata = os.path.join(path_project, "metadata.csv") | |
| if audio_files is None: | |
| return "You need to load an audio file." | |
| if os.path.isdir(path_project_wavs): | |
| shutil.rmtree(path_project_wavs) | |
| if os.path.isfile(file_metadata): | |
| os.remove(file_metadata) | |
| os.makedirs(path_project_wavs, exist_ok=True) | |
| if user: | |
| file_audios = [ | |
| file | |
| for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac") | |
| for file in glob(os.path.join(path_dataset, format)) | |
| ] | |
| if file_audios == []: | |
| return "No audio file was found in the dataset." | |
| else: | |
| file_audios = audio_files | |
| alpha = 0.5 | |
| _max = 1.0 | |
| slicer = Slicer(24000) | |
| num = 0 | |
| error_num = 0 | |
| data = "" | |
| for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))): | |
| audio, _ = librosa.load(file_audio, sr=24000, mono=True) | |
| list_slicer = slicer.slice(audio) | |
| for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"): | |
| name_segment = os.path.join(f"segment_{num}") | |
| file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav") | |
| tmp_max = np.abs(chunk).max() | |
| if tmp_max > 1: | |
| chunk /= tmp_max | |
| chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk | |
| wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16)) | |
| try: | |
| text = transcribe(file_segment, language) | |
| text = text.lower().strip().replace('"', "") | |
| data += f"{name_segment}|{text}\n" | |
| num += 1 | |
| except: # noqa: E722 | |
| error_num += 1 | |
| with open(file_metadata, "w", encoding="utf-8") as f: | |
| f.write(data) | |
| if error_num != []: | |
| error_text = f"\nerror files : {error_num}" | |
| else: | |
| error_text = "" | |
| return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}" | |
| def format_seconds_to_hms(seconds): | |
| hours = int(seconds / 3600) | |
| minutes = int((seconds % 3600) / 60) | |
| seconds = seconds % 60 | |
| return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds)) | |
| def create_metadata(name_project, progress=gr.Progress()): | |
| name_project += "_pinyin" | |
| path_project = os.path.join(path_data, name_project) | |
| path_project_wavs = os.path.join(path_project, "wavs") | |
| file_metadata = os.path.join(path_project, "metadata.csv") | |
| file_raw = os.path.join(path_project, "raw.arrow") | |
| file_duration = os.path.join(path_project, "duration.json") | |
| file_vocab = os.path.join(path_project, "vocab.txt") | |
| if not os.path.isfile(file_metadata): | |
| return "The file was not found in " + file_metadata | |
| with open(file_metadata, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| audio_path_list = [] | |
| text_list = [] | |
| duration_list = [] | |
| count = data.split("\n") | |
| lenght = 0 | |
| result = [] | |
| error_files = [] | |
| for line in progress.tqdm(data.split("\n"), total=count): | |
| sp_line = line.split("|") | |
| if len(sp_line) != 2: | |
| continue | |
| name_audio, text = sp_line[:2] | |
| file_audio = os.path.join(path_project_wavs, name_audio + ".wav") | |
| if not os.path.isfile(file_audio): | |
| error_files.append(file_audio) | |
| continue | |
| duraction = get_audio_duration(file_audio) | |
| if duraction < 2 and duraction > 15: | |
| continue | |
| if len(text) < 4: | |
| continue | |
| text = clear_text(text) | |
| text = convert_char_to_pinyin([text], polyphone=True)[0] | |
| audio_path_list.append(file_audio) | |
| duration_list.append(duraction) | |
| text_list.append(text) | |
| result.append({"audio_path": file_audio, "text": text, "duration": duraction}) | |
| lenght += duraction | |
| if duration_list == []: | |
| error_files_text = "\n".join(error_files) | |
| return f"Error: No audio files found in the specified path : \n{error_files_text}" | |
| min_second = round(min(duration_list), 2) | |
| max_second = round(max(duration_list), 2) | |
| with ArrowWriter(path=file_raw, writer_batch_size=1) as writer: | |
| for line in progress.tqdm(result, total=len(result), desc="prepare data"): | |
| writer.write(line) | |
| with open(file_duration, "w", encoding="utf-8") as f: | |
| json.dump({"duration": duration_list}, f, ensure_ascii=False) | |
| file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt" | |
| if not os.path.isfile(file_vocab_finetune): | |
| return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!" | |
| shutil.copy2(file_vocab_finetune, file_vocab) | |
| if error_files != []: | |
| error_text = "error files\n" + "\n".join(error_files) | |
| else: | |
| error_text = "" | |
| return f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\n{error_text}" | |
| def check_user(value): | |
| return gr.update(visible=not value), gr.update(visible=value) | |
| def calculate_train( | |
| name_project, | |
| batch_size_type, | |
| max_samples, | |
| learning_rate, | |
| num_warmup_updates, | |
| save_per_updates, | |
| last_per_steps, | |
| finetune, | |
| ): | |
| name_project += "_pinyin" | |
| path_project = os.path.join(path_data, name_project) | |
| file_duraction = os.path.join(path_project, "duration.json") | |
| if not os.path.isfile(file_duraction): | |
| return ( | |
| 1000, | |
| max_samples, | |
| num_warmup_updates, | |
| save_per_updates, | |
| last_per_steps, | |
| "project not found !", | |
| learning_rate, | |
| ) | |
| with open(file_duraction, "r") as file: | |
| data = json.load(file) | |
| duration_list = data["duration"] | |
| samples = len(duration_list) | |
| if torch.cuda.is_available(): | |
| gpu_properties = torch.cuda.get_device_properties(0) | |
| total_memory = gpu_properties.total_memory / (1024**3) | |
| elif torch.backends.mps.is_available(): | |
| total_memory = psutil.virtual_memory().available / (1024**3) | |
| if batch_size_type == "frame": | |
| batch = int(total_memory * 0.5) | |
| batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch) | |
| batch_size_per_gpu = int(38400 / batch) | |
| else: | |
| batch_size_per_gpu = int(total_memory / 8) | |
| batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu) | |
| batch = batch_size_per_gpu | |
| if batch_size_per_gpu <= 0: | |
| batch_size_per_gpu = 1 | |
| if samples < 64: | |
| max_samples = int(samples * 0.25) | |
| else: | |
| max_samples = 64 | |
| num_warmup_updates = int(samples * 0.05) | |
| save_per_updates = int(samples * 0.10) | |
| last_per_steps = int(save_per_updates * 5) | |
| max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples) | |
| num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates) | |
| save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates) | |
| last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps) | |
| if finetune: | |
| learning_rate = 1e-5 | |
| else: | |
| learning_rate = 7.5e-5 | |
| return batch_size_per_gpu, max_samples, num_warmup_updates, save_per_updates, last_per_steps, samples, learning_rate | |
| def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str) -> None: | |
| try: | |
| checkpoint = torch.load(checkpoint_path) | |
| print("Original Checkpoint Keys:", checkpoint.keys()) | |
| ema_model_state_dict = checkpoint.get("ema_model_state_dict", None) | |
| if ema_model_state_dict is not None: | |
| new_checkpoint = {"ema_model_state_dict": ema_model_state_dict} | |
| torch.save(new_checkpoint, new_checkpoint_path) | |
| return f"New checkpoint saved at: {new_checkpoint_path}" | |
| else: | |
| return "No 'ema_model_state_dict' found in the checkpoint." | |
| except Exception as e: | |
| return f"An error occurred: {e}" | |
| def vocab_check(project_name): | |
| name_project = project_name + "_pinyin" | |
| path_project = os.path.join(path_data, name_project) | |
| file_metadata = os.path.join(path_project, "metadata.csv") | |
| file_vocab = "data/Emilia_ZH_EN_pinyin/vocab.txt" | |
| if not os.path.isfile(file_vocab): | |
| return f"the file {file_vocab} not found !" | |
| with open(file_vocab, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| vocab = data.split("\n") | |
| if not os.path.isfile(file_metadata): | |
| return f"the file {file_metadata} not found !" | |
| with open(file_metadata, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| miss_symbols = [] | |
| miss_symbols_keep = {} | |
| for item in data.split("\n"): | |
| sp = item.split("|") | |
| if len(sp) != 2: | |
| continue | |
| text = sp[1].lower().strip() | |
| for t in text: | |
| if t not in vocab and t not in miss_symbols_keep: | |
| miss_symbols.append(t) | |
| miss_symbols_keep[t] = t | |
| if miss_symbols == []: | |
| info = "You can train using your language !" | |
| else: | |
| info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols) | |
| return info | |
| def get_random_sample_prepare(project_name): | |
| name_project = project_name + "_pinyin" | |
| path_project = os.path.join(path_data, name_project) | |
| file_arrow = os.path.join(path_project, "raw.arrow") | |
| if not os.path.isfile(file_arrow): | |
| return "", None | |
| dataset = Dataset_.from_file(file_arrow) | |
| random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0]) | |
| text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]" | |
| audio_path = random_sample["audio_path"][0] | |
| return text, audio_path | |
| def get_random_sample_transcribe(project_name): | |
| name_project = project_name + "_pinyin" | |
| path_project = os.path.join(path_data, name_project) | |
| file_metadata = os.path.join(path_project, "metadata.csv") | |
| if not os.path.isfile(file_metadata): | |
| return "", None | |
| data = "" | |
| with open(file_metadata, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| list_data = [] | |
| for item in data.split("\n"): | |
| sp = item.split("|") | |
| if len(sp) != 2: | |
| continue | |
| list_data.append([os.path.join(path_project, "wavs", sp[0] + ".wav"), sp[1]]) | |
| if list_data == []: | |
| return "", None | |
| random_item = random.choice(list_data) | |
| return random_item[1], random_item[0] | |
| def get_random_sample_infer(project_name): | |
| text, audio = get_random_sample_transcribe(project_name) | |
| return ( | |
| text, | |
| text, | |
| audio, | |
| ) | |
| def infer(file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step): | |
| global last_checkpoint, last_device, tts_api | |
| if not os.path.isfile(file_checkpoint): | |
| return None | |
| if training_process is not None: | |
| device_test = "cpu" | |
| else: | |
| device_test = None | |
| if last_checkpoint != file_checkpoint or last_device != device_test: | |
| if last_checkpoint != file_checkpoint: | |
| last_checkpoint = file_checkpoint | |
| if last_device != device_test: | |
| last_device = device_test | |
| tts_api = F5TTS(model_type=exp_name, ckpt_file=file_checkpoint, device=device_test) | |
| print("update", device_test, file_checkpoint) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
| tts_api.infer(gen_text=gen_text, ref_text=ref_text, ref_file=ref_audio, nfe_step=nfe_step, file_wave=f.name) | |
| return f.name | |
| with gr.Blocks() as app: | |
| with gr.Row(): | |
| project_name = gr.Textbox(label="project name", value="my_speak") | |
| bt_create = gr.Button("create new project") | |
| bt_create.click(fn=create_data_project, inputs=[project_name]) | |
| with gr.Tabs(): | |
| with gr.TabItem("transcribe Data"): | |
| ch_manual = gr.Checkbox(label="user", value=False) | |
| mark_info_transcribe = gr.Markdown( | |
| """```plaintext | |
| Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory. | |
| my_speak/ | |
| β | |
| βββ dataset/ | |
| βββ audio1.wav | |
| βββ audio2.wav | |
| ... | |
| ```""", | |
| visible=False, | |
| ) | |
| audio_speaker = gr.File(label="voice", type="filepath", file_count="multiple") | |
| txt_lang = gr.Text(label="Language", value="english") | |
| bt_transcribe = bt_create = gr.Button("transcribe") | |
| txt_info_transcribe = gr.Text(label="info", value="") | |
| bt_transcribe.click( | |
| fn=transcribe_all, | |
| inputs=[project_name, audio_speaker, txt_lang, ch_manual], | |
| outputs=[txt_info_transcribe], | |
| ) | |
| ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe]) | |
| random_sample_transcribe = gr.Button("random sample") | |
| with gr.Row(): | |
| random_text_transcribe = gr.Text(label="Text") | |
| random_audio_transcribe = gr.Audio(label="Audio", type="filepath") | |
| random_sample_transcribe.click( | |
| fn=get_random_sample_transcribe, | |
| inputs=[project_name], | |
| outputs=[random_text_transcribe, random_audio_transcribe], | |
| ) | |
| with gr.TabItem("prepare Data"): | |
| gr.Markdown( | |
| """```plaintext | |
| place all your wavs folder and your metadata.csv file in {your name project} | |
| my_speak/ | |
| β | |
| βββ wavs/ | |
| β βββ audio1.wav | |
| β βββ audio2.wav | |
| | ... | |
| β | |
| βββ metadata.csv | |
| file format metadata.csv | |
| audio1|text1 | |
| audio2|text1 | |
| ... | |
| ```""" | |
| ) | |
| bt_prepare = bt_create = gr.Button("prepare") | |
| txt_info_prepare = gr.Text(label="info", value="") | |
| bt_prepare.click(fn=create_metadata, inputs=[project_name], outputs=[txt_info_prepare]) | |
| random_sample_prepare = gr.Button("random sample") | |
| with gr.Row(): | |
| random_text_prepare = gr.Text(label="Pinyin") | |
| random_audio_prepare = gr.Audio(label="Audio", type="filepath") | |
| random_sample_prepare.click( | |
| fn=get_random_sample_prepare, inputs=[project_name], outputs=[random_text_prepare, random_audio_prepare] | |
| ) | |
| with gr.TabItem("train Data"): | |
| with gr.Row(): | |
| bt_calculate = bt_create = gr.Button("Auto Settings") | |
| ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True) | |
| lb_samples = gr.Label(label="samples") | |
| batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame") | |
| with gr.Row(): | |
| exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base") | |
| learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5) | |
| with gr.Row(): | |
| batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000) | |
| max_samples = gr.Number(label="Max Samples", value=64) | |
| with gr.Row(): | |
| grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1) | |
| max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0) | |
| with gr.Row(): | |
| epochs = gr.Number(label="Epochs", value=10) | |
| num_warmup_updates = gr.Number(label="Warmup Updates", value=5) | |
| with gr.Row(): | |
| save_per_updates = gr.Number(label="Save per Updates", value=10) | |
| last_per_steps = gr.Number(label="Last per Steps", value=50) | |
| with gr.Row(): | |
| start_button = gr.Button("Start Training") | |
| stop_button = gr.Button("Stop Training", interactive=False) | |
| txt_info_train = gr.Text(label="info", value="") | |
| start_button.click( | |
| fn=start_training, | |
| inputs=[ | |
| project_name, | |
| exp_name, | |
| learning_rate, | |
| batch_size_per_gpu, | |
| batch_size_type, | |
| max_samples, | |
| grad_accumulation_steps, | |
| max_grad_norm, | |
| epochs, | |
| num_warmup_updates, | |
| save_per_updates, | |
| last_per_steps, | |
| ch_finetune, | |
| ], | |
| outputs=[txt_info_train, start_button, stop_button], | |
| ) | |
| stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button]) | |
| bt_calculate.click( | |
| fn=calculate_train, | |
| inputs=[ | |
| project_name, | |
| batch_size_type, | |
| max_samples, | |
| learning_rate, | |
| num_warmup_updates, | |
| save_per_updates, | |
| last_per_steps, | |
| ch_finetune, | |
| ], | |
| outputs=[ | |
| batch_size_per_gpu, | |
| max_samples, | |
| num_warmup_updates, | |
| save_per_updates, | |
| last_per_steps, | |
| lb_samples, | |
| learning_rate, | |
| ], | |
| ) | |
| with gr.TabItem("reduse checkpoint"): | |
| txt_path_checkpoint = gr.Text(label="path checkpoint :") | |
| txt_path_checkpoint_small = gr.Text(label="path output :") | |
| txt_info_reduse = gr.Text(label="info", value="") | |
| reduse_button = gr.Button("reduse") | |
| reduse_button.click( | |
| fn=extract_and_save_ema_model, | |
| inputs=[txt_path_checkpoint, txt_path_checkpoint_small], | |
| outputs=[txt_info_reduse], | |
| ) | |
| with gr.TabItem("vocab check experiment"): | |
| check_button = gr.Button("check vocab") | |
| txt_info_check = gr.Text(label="info", value="") | |
| check_button.click(fn=vocab_check, inputs=[project_name], outputs=[txt_info_check]) | |
| with gr.TabItem("test model"): | |
| exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS") | |
| nfe_step = gr.Number(label="n_step", value=32) | |
| file_checkpoint_pt = gr.Textbox(label="Checkpoint", value="") | |
| random_sample_infer = gr.Button("random sample") | |
| ref_text = gr.Textbox(label="ref text") | |
| ref_audio = gr.Audio(label="audio ref", type="filepath") | |
| gen_text = gr.Textbox(label="gen text") | |
| random_sample_infer.click( | |
| fn=get_random_sample_infer, inputs=[project_name], outputs=[ref_text, gen_text, ref_audio] | |
| ) | |
| check_button_infer = gr.Button("infer") | |
| gen_audio = gr.Audio(label="audio gen", type="filepath") | |
| check_button_infer.click( | |
| fn=infer, | |
| inputs=[file_checkpoint_pt, exp_name, ref_text, ref_audio, gen_text, nfe_step], | |
| outputs=[gen_audio], | |
| ) | |
| def main(port, host, share, api): | |
| global app | |
| print("Starting app...") | |
| app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api) | |
| if __name__ == "__main__": | |
| main() | |
