engralimalik commited on
Commit
11532fe
·
verified ·
1 Parent(s): 01e575d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -2
app.py CHANGED
@@ -4,16 +4,39 @@ import streamlit as st
4
  from transformers import pipeline
5
  import datetime
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # File upload
8
  uploaded_file = st.file_uploader("Upload your expense CSV file", type=["csv"])
9
  if uploaded_file:
10
  df = pd.read_csv(uploaded_file)
11
 
12
- # Display Dataframe
 
13
  st.write(df.head())
14
 
 
 
 
15
  # Initialize Hugging Face model for zero-shot classification
16
- classifier = pipeline('zero-shot-classification', model='distilbert-base-uncased')
17
  categories = ["Groceries", "Rent", "Utilities", "Entertainment", "Dining", "Transportation"]
18
 
19
  # Function to categorize
 
4
  from transformers import pipeline
5
  import datetime
6
 
7
+ # Function to add background image to the app
8
+ def add_bg_from_url(image_url):
9
+ st.markdown(
10
+ f"""
11
+ <style>
12
+ .stApp {{
13
+ background-image: url({image_url});
14
+ background-size: cover;
15
+ background-position: center center;
16
+ background-repeat: no-repeat;
17
+ }}
18
+ </style>
19
+ """,
20
+ unsafe_allow_html=True
21
+ )
22
+
23
+ # Set background image (it will remain even after file upload)
24
+ add_bg_from_url('https://huggingface.co/spaces/engralimalik/Smart-Expense-Tracker/resolve/main/top-view-finance-business-elements.jpg')
25
+
26
  # File upload
27
  uploaded_file = st.file_uploader("Upload your expense CSV file", type=["csv"])
28
  if uploaded_file:
29
  df = pd.read_csv(uploaded_file)
30
 
31
+ # Display first few rows to the user for format verification
32
+ st.write("Here are the first few entries in your file for format verification:")
33
  st.write(df.head())
34
 
35
+ # Ensure 'Amount' is numeric
36
+ df['Amount'] = pd.to_numeric(df['Amount'], errors='coerce')
37
+
38
  # Initialize Hugging Face model for zero-shot classification
39
+ classifier = pipeline('zero-shot-classification', model='roberta-large-mnli')
40
  categories = ["Groceries", "Rent", "Utilities", "Entertainment", "Dining", "Transportation"]
41
 
42
  # Function to categorize