Update app.py
Browse files
app.py
CHANGED
@@ -1,109 +1,77 @@
|
|
1 |
import pandas as pd
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
import plotly.express as px
|
4 |
import streamlit as st
|
5 |
from transformers import pipeline
|
6 |
|
7 |
-
#
|
8 |
-
uploaded_file = st.file_uploader("Upload
|
9 |
-
|
10 |
-
if uploaded_file is not None:
|
11 |
-
# Load the file into a DataFrame
|
12 |
df = pd.read_csv(uploaded_file)
|
13 |
|
14 |
-
#
|
15 |
-
st.write(
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
budgets = {}
|
83 |
-
for category in default_budgets:
|
84 |
-
budgets[category] = st.slider(f"Budget for {category} ($)",
|
85 |
-
min_value=0,
|
86 |
-
max_value=2000,
|
87 |
-
value=default_budgets[category],
|
88 |
-
step=50)
|
89 |
-
|
90 |
-
# Track if any category exceeds its budget
|
91 |
-
df['Budget_Exceeded'] = df.apply(lambda row: row['Amount'] > budgets.get(row['Category'], 0), axis=1)
|
92 |
-
|
93 |
-
# Show which categories exceeded their budgets
|
94 |
-
exceeded_budget = df[df['Budget_Exceeded'] == True]
|
95 |
-
st.write("Categories that exceeded the budget:", exceeded_budget[['Date', 'Category', 'Amount']])
|
96 |
-
|
97 |
-
# Visualization 3: Monthly Spending vs Budget (Bar Chart)
|
98 |
-
# Create a figure explicitly for the bar chart
|
99 |
-
fig3, ax3 = plt.subplots(figsize=(10, 6)) # Create figure and axes
|
100 |
-
monthly_expenses_df = pd.DataFrame({
|
101 |
-
'Actual': monthly_expenses,
|
102 |
-
'Budget': [sum(budgets.values())] * len(monthly_expenses) # Same budget for simplicity
|
103 |
-
})
|
104 |
-
monthly_expenses_df.plot(kind='bar', ax=ax3) # Pass the axes to the plot
|
105 |
-
ax3.set_title('Monthly Spending vs Budget')
|
106 |
-
ax3.set_ylabel('Amount ($)')
|
107 |
-
|
108 |
-
# Display the plot with Streamlit
|
109 |
-
st.pyplot(fig3)
|
|
|
1 |
import pandas as pd
|
|
|
2 |
import plotly.express as px
|
3 |
import streamlit as st
|
4 |
from transformers import pipeline
|
5 |
|
6 |
+
# File upload
|
7 |
+
uploaded_file = st.file_uploader("Upload your expense CSV file", type=["csv"])
|
8 |
+
if uploaded_file:
|
|
|
|
|
9 |
df = pd.read_csv(uploaded_file)
|
10 |
|
11 |
+
# Display Dataframe
|
12 |
+
st.write(df.head())
|
13 |
+
|
14 |
+
# Initialize Hugging Face model for zero-shot classification
|
15 |
+
classifier = pipeline('zero-shot-classification', model='distilbert-base-uncased')
|
16 |
+
categories = ["Groceries", "Rent", "Utilities", "Entertainment", "Dining", "Transportation"]
|
17 |
+
|
18 |
+
# Function to categorize
|
19 |
+
def categorize_expense(description):
|
20 |
+
result = classifier(description, candidate_labels=categories)
|
21 |
+
return result['labels'][0] # Most probable category
|
22 |
+
|
23 |
+
# Apply categorization
|
24 |
+
df['Category'] = df['Description'].apply(categorize_expense)
|
25 |
+
|
26 |
+
# Display categorized data
|
27 |
+
st.write("Categorized Data", df)
|
28 |
+
|
29 |
+
# Sidebar for setting the monthly budget using sliders
|
30 |
+
st.sidebar.header("Set Your Monthly Budget")
|
31 |
+
groceries_budget = st.sidebar.slider("Groceries Budget", 0, 1000, 300)
|
32 |
+
rent_budget = st.sidebar.slider("Rent Budget", 0, 5000, 1000)
|
33 |
+
utilities_budget = st.sidebar.slider("Utilities Budget", 0, 500, 150)
|
34 |
+
entertainment_budget = st.sidebar.slider("Entertainment Budget", 0, 1000, 100)
|
35 |
+
dining_budget = st.sidebar.slider("Dining Budget", 0, 1000, 150)
|
36 |
+
transportation_budget = st.sidebar.slider("Transportation Budget", 0, 500, 120)
|
37 |
+
|
38 |
+
# Store the updated budget values
|
39 |
+
budgets = {
|
40 |
+
"Groceries": groceries_budget,
|
41 |
+
"Rent": rent_budget,
|
42 |
+
"Utilities": utilities_budget,
|
43 |
+
"Entertainment": entertainment_budget,
|
44 |
+
"Dining": dining_budget,
|
45 |
+
"Transportation": transportation_budget
|
46 |
+
}
|
47 |
+
|
48 |
+
# Track if any category exceeds its budget
|
49 |
+
df['Budget_Exceeded'] = df.apply(lambda row: row['Amount'] > budgets.get(row['Category'], 0), axis=1)
|
50 |
+
|
51 |
+
# Show categories that exceeded their budget
|
52 |
+
exceeded_budget = df[df['Budget_Exceeded'] == True]
|
53 |
+
st.write("Categories that exceeded the budget:", exceeded_budget[['Date', 'Category', 'Amount']])
|
54 |
+
|
55 |
+
# Visualizations
|
56 |
+
|
57 |
+
# 1. Pie Chart for expense distribution by category
|
58 |
+
category_expenses = df.groupby('Category')['Amount'].sum()
|
59 |
+
fig1 = px.pie(category_expenses, values=category_expenses.values, names=category_expenses.index, title="Expense Distribution by Category")
|
60 |
+
st.plotly_chart(fig1)
|
61 |
+
|
62 |
+
# 2. Monthly Spending Trends (Line Chart)
|
63 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
64 |
+
df['Month'] = df['Date'].dt.to_period('M').astype(str) # Convert Period to string for Plotly compatibility
|
65 |
+
monthly_expenses = df.groupby('Month')['Amount'].sum()
|
66 |
+
|
67 |
+
fig2 = px.line(monthly_expenses, x=monthly_expenses.index, y=monthly_expenses.values, title="Monthly Expenses", labels={"x": "Month", "y": "Amount ($)"})
|
68 |
+
st.plotly_chart(fig2)
|
69 |
+
|
70 |
+
# 3. Monthly Spending vs Budget (Bar Chart)
|
71 |
+
monthly_expenses_df = pd.DataFrame({
|
72 |
+
'Actual': monthly_expenses,
|
73 |
+
'Budget': [sum(budgets.values())] * len(monthly_expenses) # Same budget for simplicity
|
74 |
+
})
|
75 |
+
|
76 |
+
fig3 = monthly_expenses_df.plot(kind='bar', figsize=(10, 6))
|
77 |
+
st.pyplot(fig3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|