Update app.py
Browse files
app.py
CHANGED
|
@@ -2,9 +2,40 @@ import pandas as pd
|
|
| 2 |
import plotly.express as px
|
| 3 |
import streamlit as st
|
| 4 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# File upload
|
| 7 |
uploaded_file = st.file_uploader("Upload your expense CSV file", type=["csv"])
|
|
|
|
| 8 |
if uploaded_file:
|
| 9 |
df = pd.read_csv(uploaded_file)
|
| 10 |
|
|
@@ -17,9 +48,7 @@ if uploaded_file:
|
|
| 17 |
|
| 18 |
# Function to categorize
|
| 19 |
def categorize_expense(description):
|
| 20 |
-
# Check raw output from the model for debugging
|
| 21 |
result = classifier(description, candidate_labels=categories)
|
| 22 |
-
st.write(f"Raw classification result for '{description}': {result}") # Debugging line
|
| 23 |
return result['labels'][0] # Most probable category
|
| 24 |
|
| 25 |
# Apply categorization
|
|
@@ -69,11 +98,11 @@ if uploaded_file:
|
|
| 69 |
fig2 = px.line(monthly_expenses, x=monthly_expenses.index, y=monthly_expenses.values, title="Monthly Expenses", labels={"x": "Month", "y": "Amount ($)"})
|
| 70 |
st.plotly_chart(fig2)
|
| 71 |
|
| 72 |
-
# 3. Monthly Spending vs Budget (Bar Chart
|
| 73 |
monthly_expenses_df = pd.DataFrame({
|
| 74 |
'Actual': monthly_expenses,
|
| 75 |
'Budget': [sum(budgets.values())] * len(monthly_expenses) # Same budget for simplicity
|
| 76 |
})
|
| 77 |
|
| 78 |
-
fig3 =
|
| 79 |
-
st.
|
|
|
|
| 2 |
import plotly.express as px
|
| 3 |
import streamlit as st
|
| 4 |
from transformers import pipeline
|
| 5 |
+
import base64
|
| 6 |
+
|
| 7 |
+
# Function to add custom background image
|
| 8 |
+
def add_bg_from_url(image_path):
|
| 9 |
+
# Convert image to base64
|
| 10 |
+
with open(image_path, "rb") as image_file:
|
| 11 |
+
encoded_string = base64.b64encode(image_file.read()).decode()
|
| 12 |
+
|
| 13 |
+
# HTML for background image
|
| 14 |
+
st.markdown(
|
| 15 |
+
f"""
|
| 16 |
+
<style>
|
| 17 |
+
.stApp {{
|
| 18 |
+
background-image: url("data:image/png;base64,{encoded_string}");
|
| 19 |
+
background-size: cover;
|
| 20 |
+
background-position: center center;
|
| 21 |
+
background-repeat: no-repeat;
|
| 22 |
+
}}
|
| 23 |
+
</style>
|
| 24 |
+
""",
|
| 25 |
+
unsafe_allow_html=True
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Add background image (replace with your image path)
|
| 29 |
+
add_bg_from_url('path_to_your_image.jpg') # Replace with your image path
|
| 30 |
+
|
| 31 |
+
# Title and header styling
|
| 32 |
+
st.markdown("""
|
| 33 |
+
<h1 style="color: #00f7b7; font-family: 'Arial', sans-serif; text-align: center;">Smart Expense Tracker</h1>
|
| 34 |
+
""", unsafe_allow_html=True)
|
| 35 |
|
| 36 |
# File upload
|
| 37 |
uploaded_file = st.file_uploader("Upload your expense CSV file", type=["csv"])
|
| 38 |
+
|
| 39 |
if uploaded_file:
|
| 40 |
df = pd.read_csv(uploaded_file)
|
| 41 |
|
|
|
|
| 48 |
|
| 49 |
# Function to categorize
|
| 50 |
def categorize_expense(description):
|
|
|
|
| 51 |
result = classifier(description, candidate_labels=categories)
|
|
|
|
| 52 |
return result['labels'][0] # Most probable category
|
| 53 |
|
| 54 |
# Apply categorization
|
|
|
|
| 98 |
fig2 = px.line(monthly_expenses, x=monthly_expenses.index, y=monthly_expenses.values, title="Monthly Expenses", labels={"x": "Month", "y": "Amount ($)"})
|
| 99 |
st.plotly_chart(fig2)
|
| 100 |
|
| 101 |
+
# 3. Monthly Spending vs Budget (Bar Chart)
|
| 102 |
monthly_expenses_df = pd.DataFrame({
|
| 103 |
'Actual': monthly_expenses,
|
| 104 |
'Budget': [sum(budgets.values())] * len(monthly_expenses) # Same budget for simplicity
|
| 105 |
})
|
| 106 |
|
| 107 |
+
fig3 = monthly_expenses_df.plot(kind='bar', figsize=(10, 6))
|
| 108 |
+
st.pyplot(fig3)
|