Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import plotly.express as px
|
6 |
+
from plotly.subplots import make_subplots
|
7 |
+
import numpy as np
|
8 |
+
from wordcloud import WordCloud
|
9 |
+
from collections import Counter, defaultdict
|
10 |
+
import re
|
11 |
+
import json
|
12 |
+
import csv
|
13 |
+
import io
|
14 |
+
import tempfile
|
15 |
+
from datetime import datetime
|
16 |
+
import logging
|
17 |
+
from functools import lru_cache
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import List, Dict, Optional, Tuple
|
20 |
+
import nltk
|
21 |
+
from nltk.corpus import stopwords
|
22 |
+
import langdetect
|
23 |
+
import pandas as pd
|
24 |
+
|
25 |
+
# Configuration
|
26 |
+
@dataclass
|
27 |
+
class Config:
|
28 |
+
MAX_HISTORY_SIZE: int = 500
|
29 |
+
BATCH_SIZE_LIMIT: int = 30
|
30 |
+
MAX_TEXT_LENGTH: int = 512
|
31 |
+
CACHE_SIZE: int = 64
|
32 |
+
|
33 |
+
# Supported languages and models
|
34 |
+
SUPPORTED_LANGUAGES = {
|
35 |
+
'auto': 'Auto Detect',
|
36 |
+
'en': 'English',
|
37 |
+
'zh': 'Chinese',
|
38 |
+
'es': 'Spanish',
|
39 |
+
'fr': 'French',
|
40 |
+
'de': 'German'
|
41 |
+
}
|
42 |
+
|
43 |
+
MODELS = {
|
44 |
+
'en': "cardiffnlp/twitter-roberta-base-sentiment-latest",
|
45 |
+
'multilingual': "cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
46 |
+
}
|
47 |
+
|
48 |
+
# Color themes
|
49 |
+
THEMES = {
|
50 |
+
'default': {'pos': '#4CAF50', 'neg': '#F44336', 'neu': '#FF9800'},
|
51 |
+
'ocean': {'pos': '#0077BE', 'neg': '#FF6B35', 'neu': '#00BCD4'},
|
52 |
+
'dark': {'pos': '#66BB6A', 'neg': '#EF5350', 'neu': '#FFA726'},
|
53 |
+
'rainbow': {'pos': '#9C27B0', 'neg': '#E91E63', 'neu': '#FF5722'}
|
54 |
+
}
|
55 |
+
|
56 |
+
config = Config()
|
57 |
+
|
58 |
+
# Logging setup
|
59 |
+
logging.basicConfig(level=logging.INFO)
|
60 |
+
logger = logging.getLogger(__name__)
|
61 |
+
|
62 |
+
# Initialize NLTK
|
63 |
+
try:
|
64 |
+
nltk.download('stopwords', quiet=True)
|
65 |
+
nltk.download('punkt', quiet=True)
|
66 |
+
STOP_WORDS = set(stopwords.words('english'))
|
67 |
+
except:
|
68 |
+
STOP_WORDS = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
|
69 |
+
|
70 |
+
class ModelManager:
|
71 |
+
"""Manages multiple language models"""
|
72 |
+
def __init__(self):
|
73 |
+
self.models = {}
|
74 |
+
self.tokenizers = {}
|
75 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
76 |
+
self._load_default_model()
|
77 |
+
|
78 |
+
def _load_default_model(self):
|
79 |
+
"""Load the default English model"""
|
80 |
+
try:
|
81 |
+
model_name = config.MODELS['multilingual'] # Use multilingual as default
|
82 |
+
self.tokenizers['default'] = AutoTokenizer.from_pretrained(model_name)
|
83 |
+
self.models['default'] = AutoModelForSequenceClassification.from_pretrained(model_name)
|
84 |
+
self.models['default'].to(self.device)
|
85 |
+
logger.info(f"Default model loaded: {model_name}")
|
86 |
+
except Exception as e:
|
87 |
+
logger.error(f"Failed to load default model: {e}")
|
88 |
+
raise
|
89 |
+
|
90 |
+
def get_model(self, language='en'):
|
91 |
+
"""Get model for specific language"""
|
92 |
+
if language in ['en', 'auto'] or language not in config.SUPPORTED_LANGUAGES:
|
93 |
+
return self.models['default'], self.tokenizers['default']
|
94 |
+
return self.models['default'], self.tokenizers['default'] # Use multilingual for all
|
95 |
+
|
96 |
+
@staticmethod
|
97 |
+
def detect_language(text: str) -> str:
|
98 |
+
"""Detect text language"""
|
99 |
+
try:
|
100 |
+
detected = langdetect.detect(text)
|
101 |
+
return detected if detected in config.SUPPORTED_LANGUAGES else 'en'
|
102 |
+
except:
|
103 |
+
return 'en'
|
104 |
+
|
105 |
+
model_manager = ModelManager()
|
106 |
+
|
107 |
+
class HistoryManager:
|
108 |
+
"""Manages analysis history"""
|
109 |
+
def __init__(self):
|
110 |
+
self._history = []
|
111 |
+
|
112 |
+
def add_entry(self, entry: Dict):
|
113 |
+
self._history.append(entry)
|
114 |
+
if len(self._history) > config.MAX_HISTORY_SIZE:
|
115 |
+
self._history = self._history[-config.MAX_HISTORY_SIZE:]
|
116 |
+
|
117 |
+
def get_history(self) -> List[Dict]:
|
118 |
+
return self._history.copy()
|
119 |
+
|
120 |
+
def clear(self) -> int:
|
121 |
+
count = len(self._history)
|
122 |
+
self._history.clear()
|
123 |
+
return count
|
124 |
+
|
125 |
+
def get_stats(self) -> Dict:
|
126 |
+
if not self._history:
|
127 |
+
return {}
|
128 |
+
|
129 |
+
sentiments = [item['sentiment'] for item in self._history]
|
130 |
+
confidences = [item['confidence'] for item in self._history]
|
131 |
+
|
132 |
+
return {
|
133 |
+
'total_analyses': len(self._history),
|
134 |
+
'positive_count': sentiments.count('Positive'),
|
135 |
+
'negative_count': sentiments.count('Negative'),
|
136 |
+
'avg_confidence': np.mean(confidences),
|
137 |
+
'languages_detected': len(set(item.get('language', 'en') for item in self._history))
|
138 |
+
}
|
139 |
+
|
140 |
+
history_manager = HistoryManager()
|
141 |
+
|
142 |
+
class TextProcessor:
|
143 |
+
"""Enhanced text processing"""
|
144 |
+
|
145 |
+
@staticmethod
|
146 |
+
@lru_cache(maxsize=config.CACHE_SIZE)
|
147 |
+
def clean_text(text: str, remove_punctuation: bool = True, remove_numbers: bool = False) -> str:
|
148 |
+
"""Clean text with options"""
|
149 |
+
text = text.lower().strip()
|
150 |
+
|
151 |
+
if remove_numbers:
|
152 |
+
text = re.sub(r'\d+', '', text)
|
153 |
+
|
154 |
+
if remove_punctuation:
|
155 |
+
text = re.sub(r'[^\w\s]', '', text)
|
156 |
+
|
157 |
+
words = text.split()
|
158 |
+
cleaned_words = [w for w in words if w not in STOP_WORDS and len(w) > 2]
|
159 |
+
return ' '.join(cleaned_words)
|
160 |
+
|
161 |
+
@staticmethod
|
162 |
+
def extract_keywords(text: str, top_k: int = 5) -> List[str]:
|
163 |
+
"""Extract key words from text"""
|
164 |
+
cleaned = TextProcessor.clean_text(text)
|
165 |
+
words = cleaned.split()
|
166 |
+
word_freq = Counter(words)
|
167 |
+
return [word for word, _ in word_freq.most_common(top_k)]
|
168 |
+
|
169 |
+
class SentimentAnalyzer:
|
170 |
+
"""Enhanced sentiment analysis"""
|
171 |
+
|
172 |
+
@staticmethod
|
173 |
+
def analyze_text(text: str, language: str = 'auto', preprocessing_options: Dict = None) -> Dict:
|
174 |
+
"""Analyze single text with language support"""
|
175 |
+
if not text.strip():
|
176 |
+
raise ValueError("Empty text provided")
|
177 |
+
|
178 |
+
# Detect language if auto
|
179 |
+
if language == 'auto':
|
180 |
+
detected_lang = model_manager.detect_language(text)
|
181 |
+
else:
|
182 |
+
detected_lang = language
|
183 |
+
|
184 |
+
# Get appropriate model
|
185 |
+
model, tokenizer = model_manager.get_model(detected_lang)
|
186 |
+
|
187 |
+
# Preprocessing options
|
188 |
+
options = preprocessing_options or {}
|
189 |
+
processed_text = text
|
190 |
+
if options.get('clean_text', False):
|
191 |
+
processed_text = TextProcessor.clean_text(
|
192 |
+
text,
|
193 |
+
options.get('remove_punctuation', True),
|
194 |
+
options.get('remove_numbers', False)
|
195 |
+
)
|
196 |
+
|
197 |
+
try:
|
198 |
+
# Tokenize and analyze
|
199 |
+
inputs = tokenizer(processed_text, return_tensors="pt", padding=True,
|
200 |
+
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(model_manager.device)
|
201 |
+
|
202 |
+
with torch.no_grad():
|
203 |
+
outputs = model(**inputs)
|
204 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
205 |
+
|
206 |
+
# Handle different model outputs
|
207 |
+
if len(probs) == 3: # negative, neutral, positive
|
208 |
+
sentiment_idx = np.argmax(probs)
|
209 |
+
sentiment_labels = ['Negative', 'Neutral', 'Positive']
|
210 |
+
sentiment = sentiment_labels[sentiment_idx]
|
211 |
+
confidence = float(probs[sentiment_idx])
|
212 |
+
|
213 |
+
result = {
|
214 |
+
'sentiment': sentiment,
|
215 |
+
'confidence': confidence,
|
216 |
+
'neg_prob': float(probs[0]),
|
217 |
+
'neu_prob': float(probs[1]),
|
218 |
+
'pos_prob': float(probs[2]),
|
219 |
+
'has_neutral': True
|
220 |
+
}
|
221 |
+
else: # negative, positive
|
222 |
+
pred = np.argmax(probs)
|
223 |
+
sentiment = "Positive" if pred == 1 else "Negative"
|
224 |
+
confidence = float(probs[pred])
|
225 |
+
|
226 |
+
result = {
|
227 |
+
'sentiment': sentiment,
|
228 |
+
'confidence': confidence,
|
229 |
+
'neg_prob': float(probs[0]),
|
230 |
+
'pos_prob': float(probs[1]),
|
231 |
+
'neu_prob': 0.0,
|
232 |
+
'has_neutral': False
|
233 |
+
}
|
234 |
+
|
235 |
+
# Add metadata
|
236 |
+
result.update({
|
237 |
+
'language': detected_lang,
|
238 |
+
'keywords': TextProcessor.extract_keywords(text),
|
239 |
+
'word_count': len(text.split()),
|
240 |
+
'char_count': len(text)
|
241 |
+
})
|
242 |
+
|
243 |
+
return result
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
logger.error(f"Analysis failed: {e}")
|
247 |
+
raise
|
248 |
+
|
249 |
+
class PlotlyVisualizer:
|
250 |
+
"""Enhanced visualizations with Plotly"""
|
251 |
+
|
252 |
+
@staticmethod
|
253 |
+
def create_sentiment_gauge(result: Dict, theme: str = 'default') -> go.Figure:
|
254 |
+
"""Create an animated sentiment gauge"""
|
255 |
+
colors = config.THEMES[theme]
|
256 |
+
|
257 |
+
if result['has_neutral']:
|
258 |
+
# Three-way gauge
|
259 |
+
fig = go.Figure(go.Indicator(
|
260 |
+
mode = "gauge+number+delta",
|
261 |
+
value = result['pos_prob'] * 100,
|
262 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
263 |
+
title = {'text': f"Sentiment: {result['sentiment']}"},
|
264 |
+
delta = {'reference': 50},
|
265 |
+
gauge = {
|
266 |
+
'axis': {'range': [None, 100]},
|
267 |
+
'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
|
268 |
+
'steps': [
|
269 |
+
{'range': [0, 33], 'color': colors['neg']},
|
270 |
+
{'range': [33, 67], 'color': colors['neu']},
|
271 |
+
{'range': [67, 100], 'color': colors['pos']}
|
272 |
+
],
|
273 |
+
'threshold': {
|
274 |
+
'line': {'color': "red", 'width': 4},
|
275 |
+
'thickness': 0.75,
|
276 |
+
'value': 90
|
277 |
+
}
|
278 |
+
}
|
279 |
+
))
|
280 |
+
else:
|
281 |
+
# Two-way gauge
|
282 |
+
fig = go.Figure(go.Indicator(
|
283 |
+
mode = "gauge+number",
|
284 |
+
value = result['confidence'] * 100,
|
285 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
286 |
+
title = {'text': f"Confidence: {result['sentiment']}"},
|
287 |
+
gauge = {
|
288 |
+
'axis': {'range': [None, 100]},
|
289 |
+
'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
|
290 |
+
'steps': [
|
291 |
+
{'range': [0, 50], 'color': "lightgray"},
|
292 |
+
{'range': [50, 100], 'color': "gray"}
|
293 |
+
]
|
294 |
+
}
|
295 |
+
))
|
296 |
+
|
297 |
+
fig.update_layout(height=400, font={'size': 16})
|
298 |
+
return fig
|
299 |
+
|
300 |
+
@staticmethod
|
301 |
+
def create_probability_bars(result: Dict, theme: str = 'default') -> go.Figure:
|
302 |
+
"""Create probability bar chart"""
|
303 |
+
colors = config.THEMES[theme]
|
304 |
+
|
305 |
+
if result['has_neutral']:
|
306 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
307 |
+
values = [result['neg_prob'], result['neu_prob'], result['pos_prob']]
|
308 |
+
bar_colors = [colors['neg'], colors['neu'], colors['pos']]
|
309 |
+
else:
|
310 |
+
labels = ['Negative', 'Positive']
|
311 |
+
values = [result['neg_prob'], result['pos_prob']]
|
312 |
+
bar_colors = [colors['neg'], colors['pos']]
|
313 |
+
|
314 |
+
fig = go.Figure(data=[
|
315 |
+
go.Bar(x=labels, y=values, marker_color=bar_colors, text=[f'{v:.3f}' for v in values])
|
316 |
+
])
|
317 |
+
|
318 |
+
fig.update_traces(texttemplate='%{text}', textposition='outside')
|
319 |
+
fig.update_layout(
|
320 |
+
title="Sentiment Probabilities",
|
321 |
+
yaxis_title="Probability",
|
322 |
+
height=400,
|
323 |
+
showlegend=False
|
324 |
+
)
|
325 |
+
|
326 |
+
return fig
|
327 |
+
|
328 |
+
@staticmethod
|
329 |
+
def create_history_dashboard(history: List[Dict]) -> go.Figure:
|
330 |
+
"""Create comprehensive history dashboard"""
|
331 |
+
if len(history) < 2:
|
332 |
+
return go.Figure()
|
333 |
+
|
334 |
+
# Create subplots
|
335 |
+
fig = make_subplots(
|
336 |
+
rows=2, cols=2,
|
337 |
+
subplot_titles=['Sentiment Timeline', 'Confidence Distribution',
|
338 |
+
'Language Distribution', 'Sentiment Summary'],
|
339 |
+
specs=[[{"secondary_y": False}, {"secondary_y": False}],
|
340 |
+
[{"type": "pie"}, {"type": "bar"}]]
|
341 |
+
)
|
342 |
+
|
343 |
+
# Extract data
|
344 |
+
indices = list(range(len(history)))
|
345 |
+
pos_probs = [item['pos_prob'] for item in history]
|
346 |
+
confidences = [item['confidence'] for item in history]
|
347 |
+
sentiments = [item['sentiment'] for item in history]
|
348 |
+
languages = [item.get('language', 'en') for item in history]
|
349 |
+
|
350 |
+
# Sentiment timeline
|
351 |
+
colors = ['#4CAF50' if s == 'Positive' else '#F44336' for s in sentiments]
|
352 |
+
fig.add_trace(
|
353 |
+
go.Scatter(x=indices, y=pos_probs, mode='lines+markers',
|
354 |
+
marker=dict(color=colors, size=8),
|
355 |
+
name='Positive Probability'),
|
356 |
+
row=1, col=1
|
357 |
+
)
|
358 |
+
|
359 |
+
# Confidence distribution
|
360 |
+
fig.add_trace(
|
361 |
+
go.Histogram(x=confidences, nbinsx=10, name='Confidence'),
|
362 |
+
row=1, col=2
|
363 |
+
)
|
364 |
+
|
365 |
+
# Language distribution
|
366 |
+
lang_counts = Counter(languages)
|
367 |
+
fig.add_trace(
|
368 |
+
go.Pie(labels=list(lang_counts.keys()), values=list(lang_counts.values()),
|
369 |
+
name="Languages"),
|
370 |
+
row=2, col=1
|
371 |
+
)
|
372 |
+
|
373 |
+
# Sentiment summary
|
374 |
+
sent_counts = Counter(sentiments)
|
375 |
+
fig.add_trace(
|
376 |
+
go.Bar(x=list(sent_counts.keys()), y=list(sent_counts.values()),
|
377 |
+
marker_color=['#4CAF50' if k == 'Positive' else '#F44336' for k in sent_counts.keys()]),
|
378 |
+
row=2, col=2
|
379 |
+
)
|
380 |
+
|
381 |
+
fig.update_layout(height=800, showlegend=False)
|
382 |
+
return fig
|
383 |
+
|
384 |
+
# Main application functions
|
385 |
+
def analyze_single_text(text: str, language: str, theme: str, clean_text: bool,
|
386 |
+
remove_punct: bool, remove_nums: bool):
|
387 |
+
"""Enhanced single text analysis"""
|
388 |
+
try:
|
389 |
+
if not text.strip():
|
390 |
+
return "Please enter text", None, None, "No analysis performed"
|
391 |
+
|
392 |
+
preprocessing_options = {
|
393 |
+
'clean_text': clean_text,
|
394 |
+
'remove_punctuation': remove_punct,
|
395 |
+
'remove_numbers': remove_nums
|
396 |
+
}
|
397 |
+
|
398 |
+
result = SentimentAnalyzer.analyze_text(text, language, preprocessing_options)
|
399 |
+
|
400 |
+
# Add to history
|
401 |
+
history_entry = {
|
402 |
+
'text': text[:100] + '...' if len(text) > 100 else text,
|
403 |
+
'full_text': text,
|
404 |
+
'sentiment': result['sentiment'],
|
405 |
+
'confidence': result['confidence'],
|
406 |
+
'pos_prob': result['pos_prob'],
|
407 |
+
'neg_prob': result['neg_prob'],
|
408 |
+
'neu_prob': result.get('neu_prob', 0),
|
409 |
+
'language': result['language'],
|
410 |
+
'timestamp': datetime.now().isoformat()
|
411 |
+
}
|
412 |
+
history_manager.add_entry(history_entry)
|
413 |
+
|
414 |
+
# Create visualizations
|
415 |
+
gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme)
|
416 |
+
bars_fig = PlotlyVisualizer.create_probability_bars(result, theme)
|
417 |
+
|
418 |
+
# Create info text
|
419 |
+
info_text = f"""
|
420 |
+
**Analysis Results:**
|
421 |
+
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
|
422 |
+
- **Language:** {result['language'].upper()}
|
423 |
+
- **Keywords:** {', '.join(result['keywords'])}
|
424 |
+
- **Stats:** {result['word_count']} words, {result['char_count']} characters
|
425 |
+
"""
|
426 |
+
|
427 |
+
return info_text, gauge_fig, bars_fig, "Analysis completed successfully"
|
428 |
+
|
429 |
+
except Exception as e:
|
430 |
+
logger.error(f"Analysis failed: {e}")
|
431 |
+
return f"Error: {str(e)}", None, None, "Analysis failed"
|
432 |
+
|
433 |
+
def get_history_stats():
|
434 |
+
"""Get history statistics"""
|
435 |
+
stats = history_manager.get_stats()
|
436 |
+
if not stats:
|
437 |
+
return "No analysis history available"
|
438 |
+
|
439 |
+
return f"""
|
440 |
+
**History Statistics:**
|
441 |
+
- Total Analyses: {stats['total_analyses']}
|
442 |
+
- Positive: {stats['positive_count']} | Negative: {stats['negative_count']}
|
443 |
+
- Average Confidence: {stats['avg_confidence']:.3f}
|
444 |
+
- Languages Detected: {stats['languages_detected']}
|
445 |
+
"""
|
446 |
+
|
447 |
+
def plot_history_dashboard():
|
448 |
+
"""Create history dashboard"""
|
449 |
+
history = history_manager.get_history()
|
450 |
+
if len(history) < 2:
|
451 |
+
return None, "Need at least 2 analyses for dashboard"
|
452 |
+
|
453 |
+
fig = PlotlyVisualizer.create_history_dashboard(history)
|
454 |
+
return fig, f"Dashboard showing {len(history)} analyses"
|
455 |
+
|
456 |
+
def export_history_excel():
|
457 |
+
"""Export history to Excel"""
|
458 |
+
history = history_manager.get_history()
|
459 |
+
if not history:
|
460 |
+
return None, "No history to export"
|
461 |
+
|
462 |
+
try:
|
463 |
+
df = pd.DataFrame(history)
|
464 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
|
465 |
+
df.to_excel(temp_file.name, index=False)
|
466 |
+
return temp_file.name, f"Exported {len(history)} entries to Excel"
|
467 |
+
except Exception as e:
|
468 |
+
return None, f"Export failed: {str(e)}"
|
469 |
+
|
470 |
+
def clear_all_history():
|
471 |
+
"""Clear analysis history"""
|
472 |
+
count = history_manager.clear()
|
473 |
+
return f"Cleared {count} entries from history"
|
474 |
+
|
475 |
+
# Sample data
|
476 |
+
SAMPLE_TEXTS = [
|
477 |
+
["Amazing movie with incredible acting and stunning visuals!"],
|
478 |
+
["Terrible film, waste of time and money."],
|
479 |
+
["The movie was okay, nothing special but not bad either."],
|
480 |
+
["¡Excelente película! Me encantó la historia."], # Spanish
|
481 |
+
["这部电影很棒,我非常喜欢!"], # Chinese
|
482 |
+
]
|
483 |
+
|
484 |
+
# Gradio Interface
|
485 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Sentiment Analyzer") as demo:
|
486 |
+
gr.Markdown("# 🎭 Advanced Multilingual Sentiment Analyzer")
|
487 |
+
gr.Markdown("Analyze sentiment with multiple languages, themes, and advanced visualizations")
|
488 |
+
|
489 |
+
with gr.Tab("📝 Single Analysis"):
|
490 |
+
with gr.Row():
|
491 |
+
with gr.Column(scale=2):
|
492 |
+
text_input = gr.Textbox(
|
493 |
+
label="Text to Analyze",
|
494 |
+
placeholder="Enter your text here... (supports multiple languages)",
|
495 |
+
lines=4
|
496 |
+
)
|
497 |
+
|
498 |
+
with gr.Row():
|
499 |
+
language_select = gr.Dropdown(
|
500 |
+
choices=list(config.SUPPORTED_LANGUAGES.items()),
|
501 |
+
value='auto',
|
502 |
+
label="Language"
|
503 |
+
)
|
504 |
+
theme_select = gr.Dropdown(
|
505 |
+
choices=list(config.THEMES.keys()),
|
506 |
+
value='default',
|
507 |
+
label="Theme"
|
508 |
+
)
|
509 |
+
|
510 |
+
with gr.Row():
|
511 |
+
clean_text = gr.Checkbox(label="Clean Text", value=False)
|
512 |
+
remove_punct = gr.Checkbox(label="Remove Punctuation", value=True)
|
513 |
+
remove_nums = gr.Checkbox(label="Remove Numbers", value=False)
|
514 |
+
|
515 |
+
analyze_btn = gr.Button("🔍 Analyze", variant="primary", size="lg")
|
516 |
+
|
517 |
+
gr.Examples(
|
518 |
+
examples=SAMPLE_TEXTS,
|
519 |
+
inputs=text_input,
|
520 |
+
label="Sample Texts (Multiple Languages)"
|
521 |
+
)
|
522 |
+
|
523 |
+
with gr.Column(scale=1):
|
524 |
+
result_info = gr.Markdown("Enter text and click Analyze")
|
525 |
+
|
526 |
+
with gr.Row():
|
527 |
+
gauge_plot = gr.Plot(label="Sentiment Gauge")
|
528 |
+
bars_plot = gr.Plot(label="Probability Distribution")
|
529 |
+
|
530 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
531 |
+
|
532 |
+
with gr.Tab("📊 History & Analytics"):
|
533 |
+
with gr.Row():
|
534 |
+
stats_btn = gr.Button("📈 Get Statistics")
|
535 |
+
dashboard_btn = gr.Button("📊 View Dashboard")
|
536 |
+
clear_btn = gr.Button("🗑️ Clear History", variant="stop")
|
537 |
+
|
538 |
+
with gr.Row():
|
539 |
+
export_excel_btn = gr.Button("📁 Export Excel")
|
540 |
+
|
541 |
+
stats_output = gr.Markdown("Click 'Get Statistics' to view analysis history")
|
542 |
+
dashboard_plot = gr.Plot(label="Analytics Dashboard")
|
543 |
+
excel_file = gr.File(label="Download Excel Report")
|
544 |
+
history_status = gr.Textbox(label="Status", interactive=False)
|
545 |
+
|
546 |
+
# Event handlers
|
547 |
+
analyze_btn.click(
|
548 |
+
analyze_single_text,
|
549 |
+
inputs=[text_input, language_select, theme_select, clean_text, remove_punct, remove_nums],
|
550 |
+
outputs=[result_info, gauge_plot, bars_plot, status_output]
|
551 |
+
)
|
552 |
+
|
553 |
+
stats_btn.click(
|
554 |
+
get_history_stats,
|
555 |
+
outputs=stats_output
|
556 |
+
)
|
557 |
+
|
558 |
+
dashboard_btn.click(
|
559 |
+
plot_history_dashboard,
|
560 |
+
outputs=[dashboard_plot, history_status]
|
561 |
+
)
|
562 |
+
|
563 |
+
export_excel_btn.click(
|
564 |
+
export_history_excel,
|
565 |
+
outputs=[excel_file, history_status]
|
566 |
+
)
|
567 |
+
|
568 |
+
clear_btn.click(
|
569 |
+
clear_all_history,
|
570 |
+
outputs=history_status
|
571 |
+
)
|
572 |
+
|
573 |
+
if __name__ == "__main__":
|
574 |
+
demo.launch(share=True)
|