Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Initialize FastAPI app
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
# Load Hugging Face model and tokenizer
|
10 |
+
MODEL_NAME = "ealvaradob/bert-finetuned-phishing"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
12 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
13 |
+
|
14 |
+
# Define input structure
|
15 |
+
class TextInput(BaseModel):
|
16 |
+
text: str
|
17 |
+
|
18 |
+
@app.post("/predict")
|
19 |
+
def predict_spam(input_data: TextInput):
|
20 |
+
# Tokenize input text
|
21 |
+
inputs = tokenizer(input_data.text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
22 |
+
|
23 |
+
# Perform prediction
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(**inputs)
|
26 |
+
|
27 |
+
# Get classification result
|
28 |
+
prediction = torch.argmax(outputs.logits, dim=1).item()
|
29 |
+
|
30 |
+
# Return response
|
31 |
+
return {
|
32 |
+
"text": input_data.text,
|
33 |
+
"prediction": "Phishing Email" if prediction == 1 else "Not Phishing Email"
|
34 |
+
}
|
35 |
+
|
36 |
+
# Root Endpoint
|
37 |
+
@app.get("/")
|
38 |
+
def home():
|
39 |
+
return {"message": "Welcome to the Spam Classifier API!"}
|