File size: 10,360 Bytes
825c5d4 cc2523d ff5de12 8976fd8 ff5de12 6c5b26a e11c5ec c9181f9 4616c72 66669f3 ff5de12 c9181f9 ff5de12 66669f3 1c99721 fb49894 2127103 0aaba05 c9181f9 0aaba05 ff5de12 6c5b26a 4ccca0d 4e23572 4ccca0d 66d521b 4ccca0d 6c5b26a 4616c72 ad465b4 4616c72 6c5b26a 4616c72 6c5b26a ff5de12 6c5b26a 1c99721 6c5b26a 7c78074 6c5b26a 6fe2de4 6c5b26a 6fe2de4 6c5b26a 6fe2de4 6c5b26a 6fe2de4 6c5b26a 6fe2de4 ff5de12 6fe2de4 6c5b26a 6fe2de4 6c5b26a 6fe2de4 6c5b26a 6fe2de4 6c5b26a 7c78074 0805e5b 4616c72 6c5b26a 8966609 6c5b26a 3595c95 6c5b26a 0805e5b 9f14647 0805e5b 8976fd8 7c78074 8976fd8 0805e5b 7c78074 8966609 7c78074 9f14647 6c5b26a 2e69406 0805e5b 9f14647 6c5b26a 7c78074 9f14647 4616c72 9f14647 c9181f9 9f14647 0805e5b 6c5b26a 434563f ff5de12 9f14647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
import numpy as np
import gradio as gr
import cv2
import tensorflow as tf
import keras
from keras.models import Model
from huggingface_hub import hf_hub_download
import pandas as pd
from PIL import Image
# ---- Configuration ----
CLASS_NAMES = ['akiec', 'bcc', 'bkl', 'df', 'nv', 'vasc', 'mel']
label_to_index = {name: i for i, name in enumerate(CLASS_NAMES)}
diagnosis_map = {
'akiec': 'Bénin', 'bcc': 'Malin', 'bkl': 'Bénin', 'df': 'Bénin',
'nv': 'Bénin', 'vasc': 'Bénin', 'mel': 'Malin'
}
# ---- Téléchargement modèles ----
resnet_path = hf_hub_download(repo_id="ericjedha/resnet50", filename="Resnet50.keras")
densenet_path = hf_hub_download(repo_id="ericjedha/densenet201", filename="Densenet201.keras")
model_resnet50 = keras.saving.load_model(resnet_path, compile=False)
model_densenet = keras.saving.load_model(densenet_path, compile=False)
model_xcept = keras.saving.load_model("Xception.keras", compile=False)
# ---- Préprocesseurs ----
from tensorflow.keras.applications.xception import preprocess_input as preprocess_xception
from tensorflow.keras.applications.resnet50 import preprocess_input as preprocess_resnet
from tensorflow.keras.applications.densenet import preprocess_input as preprocess_densenet
# ---- Fonctions utilitaires ----
def get_primary_input_name(model):
if isinstance(model.inputs, list) and len(model.inputs) > 0:
return model.inputs[0].name.split(':')[0]
return "input_1"
def safe_forward(model, x):
input_name = get_primary_input_name(model)
return model({input_name: x}, training=False)
# ---- Prédiction ----
def predict_single(image_pil, weights=(0.45, 0.25, 0.30)):
img_np = np.array(image_pil)
img_299_arr = np.expand_dims(cv2.resize(img_np, (299, 299)), axis=0)
img_224_arr = np.expand_dims(cv2.resize(img_np, (224, 224)), axis=0)
pred_x_tensor = safe_forward(model_xcept, preprocess_xception(img_299_arr))
pred_r_tensor = safe_forward(model_resnet50, preprocess_resnet(img_224_arr))
pred_d_tensor = safe_forward(model_densenet, preprocess_densenet(img_224_arr))
pred_x, pred_r, pred_d = pred_x_tensor.numpy(), pred_r_tensor.numpy(), pred_d_tensor.numpy()
preds_ensemble = (weights[0] * pred_x + weights[1] * pred_r + weights[2] * pred_d)
mel_idx = label_to_index['mel']
preds_ensemble[:, mel_idx] = (0.5 * preds_ensemble[:, mel_idx] + 0.5 * pred_d[:, mel_idx])
return {
"ensemble": preds_ensemble[0], "xception": pred_x[0],
"resnet50": pred_r[0], "densenet201": pred_d[0]
}
# ---- Grad-CAM ----
# ---- Grad-CAM CORRIGÉ ----
def make_gradcam(image_pil, model, last_conv_layer_name, class_index):
input_size = model.input_shape[1:3]
img_np = np.array(image_pil)
img_resized = cv2.resize(img_np, input_size)
if 'xception' in model.name:
preprocessor = preprocess_xception
elif 'resnet50' in model.name:
preprocessor = preprocess_resnet
else:
preprocessor = preprocess_densenet
img_array_preprocessed = preprocessor(np.expand_dims(img_resized, axis=0))
# Vérification que la couche existe
try:
conv_layer = model.get_layer(last_conv_layer_name)
except ValueError:
print(f"Couche '{last_conv_layer_name}' non trouvée dans le modèle")
return img_resized
grad_model = Model(model.inputs, [conv_layer.output, model.output])
input_name = get_primary_input_name(model)
input_for_model = {input_name: img_array_preprocessed}
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(input_for_model, training=False)
if isinstance(preds, list):
preds = preds[0]
class_channel = preds[:, class_index]
grads = tape.gradient(class_channel, last_conv_layer_output)
# Vérifications de sécurité
if grads is None:
print("Gradients sont None - retour de l'image originale")
return img_resized
# Vérifier les valeurs NaN ou inf
if tf.reduce_any(tf.math.is_nan(grads)) or tf.reduce_any(tf.math.is_inf(grads)):
print("Gradients contiennent des NaN/inf - retour de l'image originale")
return img_resized
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
last_conv_layer_output = last_conv_layer_output[0]
# Calcul de la heatmap
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
# Normalisation sécurisée
heatmap = tf.maximum(heatmap, 0)
max_val = tf.math.reduce_max(heatmap)
if max_val == 0:
print("Heatmap max est 0 - création d'une heatmap neutre")
heatmap = tf.ones_like(heatmap) * 0.5
else:
heatmap = heatmap / max_val
heatmap_np = heatmap.numpy()
# Vérifications finales avant resize
if heatmap_np.size == 0:
print("Heatmap vide - retour de l'image originale")
return img_resized
if np.any(np.isnan(heatmap_np)) or np.any(np.isinf(heatmap_np)):
print("Heatmap contient des NaN/inf après conversion - retour de l'image originale")
return img_resized
# Redimensionnement sécurisé
try:
# S'assurer que heatmap_np est en float32 et dans [0,1]
heatmap_np = np.clip(heatmap_np.astype(np.float32), 0, 1)
heatmap_resized = cv2.resize(heatmap_np, (img_resized.shape[1], img_resized.shape[0]))
except cv2.error as e:
print(f"Erreur OpenCV resize: {e}")
return img_resized
# Conversion finale
heatmap_uint8 = np.uint8(255 * heatmap_resized)
heatmap_colored = cv2.applyColorMap(heatmap_uint8, cv2.COLORMAP_JET)
# Superposition
img_bgr = cv2.cvtColor(img_resized, cv2.COLOR_RGB2BGR)
superimposed_img = cv2.addWeighted(img_bgr, 0.6, heatmap_colored, 0.4, 0)
return cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB)
# ---- Fonction Gradio (avec gestion d'erreur pour Grad-CAM) ----
# ---- Fonction Gradio améliorée (avec pourcentages) ----
def gradio_predict(image_pil):
if image_pil is None: return "Veuillez uploader une image.", None, None
try:
all_preds = predict_single(image_pil)
ensemble_probs = all_preds["ensemble"]
top_class_idx = np.argmax(ensemble_probs)
top_class_name = CLASS_NAMES[top_class_idx]
global_diag = diagnosis_map[top_class_name]
# Calcul du pourcentage pour le diagnostic principal
top_class_prob = float(ensemble_probs[top_class_idx])
diagnostic_with_percentage = f"{global_diag} - {top_class_prob*100:.1f}%"
# Préparation des données pour le graphique avec pourcentages
confidences = {}
for i in range(len(CLASS_NAMES)):
prob_value = float(ensemble_probs[i])
percentage_str = f"{prob_value*100:.1f}%"
confidences[CLASS_NAMES[i]] = prob_value
df = pd.DataFrame.from_dict(confidences, orient='index', columns=['Probabilité'])
df = df.sort_values(by='Probabilité', ascending=False)
df.index.name = "Classe"
df = df.reset_index()
# Ajout d'une colonne pour les labels avec pourcentages
df['Pourcentage'] = df['Probabilité'].apply(lambda x: f"{x*100:.1f}%")
# --- BLOC GRAD-CAM SÉCURISÉ ---
gradcam_img = None # Initialisation à None
try:
model_confidences = {
"xception": all_preds["xception"][top_class_idx],
"resnet50": all_preds["resnet50"][top_class_idx],
"densenet201": all_preds["densenet201"][top_class_idx]
}
explainer_model_name = max(model_confidences, key=model_confidences.get)
model_map = {"xception": model_xcept, "resnet50": model_resnet50, "densenet201": model_densenet}
layer_map = {"xception": "block14_sepconv2_act", "resnet50": "conv5_block3_out", "densenet201": "relu"}
explainer_model = model_map[explainer_model_name]
explainer_layer = layer_map[explainer_model_name]
print(f"Génération du Grad-CAM avec le modèle '{explainer_model_name}' sur la couche '{explainer_layer}'.")
gradcam_img = make_gradcam(image_pil, explainer_model, explainer_layer, class_index=top_class_idx)
except Exception as e:
print(f"--- ERREUR LORS DE LA GÉNÉRATION DE GRAD-CAM (le reste de l'app continue) ---")
print(e)
# gradcam_img reste à None, Gradio affichera une boîte vide
# --- FIN DU BLOC SÉCURISÉ ---
return diagnostic_with_percentage, df, gradcam_img
except Exception as e:
print(f"Erreur majeure dans gradio_predict : {e}")
import traceback
traceback.print_exc()
return "Erreur lors du traitement de l'image.", None, None
# ---- Gradio UI avec pourcentages dans les barres ----
example_paths = ["exemple1.jpg", "exemple2.jpg", "exemple3.jpg"]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Analyse de lésions cutanées (Ensemble de modèles + Grad-CAM)")
gr.Markdown("Cet outil propose une prédiction de la nature de la lésion (Bénin/Malin) avec explication visuelle dynamique.")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Uploader une image de lésion")
submit_btn = gr.Button("Analyser", variant="primary")
gr.Examples(examples=example_paths, inputs=input_image)
with gr.Column(scale=1):
output_label = gr.Label(label="Diagnostic global")
# Configuration du graphique avec texte sur les barres
output_plot = gr.BarPlot(
label="Probabilités par classe",
x="Classe",
y="Probabilité",
y_lim=[0, 1],
text="Pourcentage", # Affiche la colonne "Pourcentage" sur les barres
text_position="inside" # Position du texte à l'intérieur des barres
)
output_gradcam = gr.Image(label="Visualisation Grad-CAM (Modèle 'le plus sûr')")
submit_btn.click(fn=gradio_predict, inputs=input_image, outputs=[output_label, output_plot, output_gradcam])
if __name__ == "__main__":
demo.launch() |