File size: 2,616 Bytes
8976fd8
cc2523d
8976fd8
 
cc2523d
8976fd8
66669f3
8976fd8
7d28728
66669f3
8976fd8
 
46c0fc9
8976fd8
 
 
 
 
 
261b959
cc2523d
8976fd8
 
 
 
434563f
8976fd8
cc2523d
8976fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434563f
 
8976fd8
 
 
 
 
 
 
 
434563f
 
8976fd8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
import numpy as np
import tensorflow as tf
import cv2
import matplotlib.pyplot as plt
from tensorflow.keras.applications.xception import preprocess_input, decode_predictions

# Charger le modèle
model = tf.keras.models.load_model("Xception-Baseline.keras")

# Nom de la dernière couche convolutive
last_conv_layer_name = "block14_sepconv2_act"

# Fonction Grad-CAM
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
    grad_model = tf.keras.models.Model(
        [model.inputs],
        [model.get_layer(last_conv_layer_name).output, model.output]
    )

    with tf.GradientTape() as tape:
        conv_outputs, predictions = grad_model(img_array)
        if pred_index is None:
            pred_index = tf.argmax(predictions[0])
        class_channel = predictions[:, pred_index]

    grads = tape.gradient(class_channel, conv_outputs)
    pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
    conv_outputs = conv_outputs[0]
    heatmap = conv_outputs @ pooled_grads[..., tf.newaxis]
    heatmap = tf.squeeze(heatmap)
    heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
    return heatmap.numpy(), predictions.numpy()

# Superposition de la heatmap
def overlay_heatmap(original_img, heatmap, alpha=0.4):
    heatmap = cv2.resize(heatmap, (original_img.shape[1], original_img.shape[0]))
    heatmap = np.uint8(255 * heatmap)
    heatmap_color = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
    superimposed_img = cv2.addWeighted(heatmap_color, alpha, original_img, 1 - alpha, 0)
    return superimposed_img

# Fonction principale pour Gradio
def gradcam_interface(img):
    # Convertir l'image
    img_resized = cv2.resize(img, (299, 299))
    img_rgb = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB)
    input_array = preprocess_input(np.expand_dims(img_rgb.astype(np.float32), axis=0))

    # Générer heatmap
    heatmap, preds = make_gradcam_heatmap(input_array, model, last_conv_layer_name)

    # Décodage prédiction (si modèle pré-entraîné sur ImageNet, sinon adapter)
    class_idx = np.argmax(preds[0])
    confidence = preds[0][class_idx]
    decoded = f"Classe prédite : {class_idx} | Confiance : {confidence:.2f}"

    # Appliquer la heatmap
    heatmap_overlay = overlay_heatmap(img_resized, heatmap)

    return heatmap_overlay, decoded

# Interface Gradio
demo = gr.Interface(
    fn=gradcam_interface,
    inputs=gr.Image(type="numpy", label="Image"),
    outputs=[
        gr.Image(type="numpy", label="Grad-CAM"),
        gr.Text(label="Prédiction")
    ],
    title="Grad-CAM Visualizer - Xception"
)

demo.launch()