skin_care / app.py
ericjedha's picture
Update app.py
474e45e verified
raw
history blame
18.2 kB
import os
import numpy as np
import gradio as gr
import cv2
import tensorflow as tf
import keras
from keras.models import Model
from keras.preprocessing import image
from huggingface_hub import hf_hub_download
import pandas as pd
from PIL import Image
import plotly.express as px
import threading
import time
# Désactiver GPU et logs TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.config.set_visible_devices([], 'GPU')
# ---- Configuration ----
CLASS_NAMES = ['akiec', 'bcc', 'bkl', 'df', 'nv', 'vasc', 'mel']
label_to_index = {name: i for i, name in enumerate(CLASS_NAMES)}
diagnosis_map = {
'akiec': 'Bénin', 'bcc': 'Malin', 'bkl': 'Bénin', 'df': 'Bénin',
'nv': 'Bénin', 'vasc': 'Bénin', 'mel': 'Malin'
}
# ---- Chargement des modèles ----
def load_models_safely():
models = {}
try:
print("📥 Téléchargement ResNet50...")
resnet_path = hf_hub_download(repo_id="ericjedha/resnet50", filename="Resnet50.keras")
models['resnet50'] = keras.saving.load_model(resnet_path, compile=False)
print("✅ ResNet50 chargé")
except Exception as e:
models['resnet50'] = None
try:
print("📥 Téléchargement DenseNet201...")
densenet_path = hf_hub_download(repo_id="ericjedha/densenet201", filename="Densenet201.keras")
models['densenet201'] = keras.saving.load_model(densenet_path, compile=False)
print("✅ DenseNet201 chargé")
except Exception as e:
models['densenet201'] = None
try:
print("📥 Chargement Xception local...")
if os.path.exists("Xception.keras"):
models['xception'] = keras.saving.load_model("Xception.keras", compile=False)
print("✅ Xception chargé")
else:
models['xception'] = None
except Exception as e:
models['xception'] = None
loaded = {k: v for k, v in models.items() if v is not None}
if not loaded:
raise Exception("❌ Aucun modèle n'a pu être chargé!")
print(f"🎯 Modèles chargés: {list(loaded.keys())}")
return models
try:
models_dict = load_models_safely()
model_resnet50 = models_dict.get('resnet50')
model_densenet = models_dict.get('densenet201')
model_xcept = models_dict.get('xception')
except Exception as e:
print(f"🚨 ERREUR CRITIQUE: {e}")
model_resnet50 = model_densenet = model_xcept = None
# ---- Préprocesseurs ----
from tensorflow.keras.applications.xception import preprocess_input as preprocess_xception
from tensorflow.keras.applications.resnet50 import preprocess_input as preprocess_resnet
from tensorflow.keras.applications.densenet import preprocess_input as preprocess_densenet
# ---- Utils ----
def _renorm_safe(p: np.ndarray) -> np.ndarray:
p = np.clip(p, 0.0, None) # Évite les valeurs négatives
s = np.sum(p)
if s <= 0:
return np.ones_like(p, dtype=np.float32) / len(p)
normalized = p / s
return normalized / np.sum(normalized) if np.sum(normalized) > 1.0001 else normalized
def get_primary_input_name(model):
if isinstance(model.inputs, list) and len(model.inputs) > 0:
return model.inputs[0].name.split(':')[0]
return "input_1"
# Helper progress robuste
import time
import numpy as np
def _update_progress(progress, value, desc=""):
"""
Met à jour la barre de progression.
"""
if progress is not None:
progress(value / 100.0, desc=desc)
# ---- GRAD-CAM AVEC YIELD POUR FORCER LES MISES À JOUR ----
def make_gradcam_with_progress(image_pil, model, last_conv_layer_name, class_index, progress=None):
"""
Version générateur qui yield à chaque étape pour forcer la mise à jour de Gradio
"""
if model is None:
yield np.array(image_pil)
return
try:
_update_progress(progress, 5, "🔄 Initialisation...")
yield None # Force la mise à jour
# Détermination de la taille d'entrée et du preprocesseur
input_size = model.input_shape[1:3]
if 'xception' in model.name.lower():
preprocessor = preprocess_xception
elif 'resnet50' in model.name.lower():
preprocessor = preprocess_resnet
elif 'densenet' in model.name.lower():
preprocessor = preprocess_densenet
else:
preprocessor = preprocess_densenet
_update_progress(progress, 15, "🖼️ Préparation de l'image...")
yield None
# Préparation de l'image
img_np = np.array(image_pil.convert("RGB"))
img_resized = cv2.resize(img_np, input_size)
img_array_preprocessed = preprocessor(np.expand_dims(img_resized, axis=0))
_update_progress(progress, 25, "⚙️ Configuration du modèle...")
yield None
# Configuration du modèle pour Grad-CAM
try:
conv_layer = model.get_layer(last_conv_layer_name)
except ValueError:
yield img_resized
return
grad_model = Model(model.inputs, [conv_layer.output, model.output])
input_name = get_primary_input_name(model)
input_for_model = {input_name: img_array_preprocessed}
_update_progress(progress, 35, "🧠 Début du calcul des gradients...")
yield None
# On simule plusieurs étapes pendant le calcul critique
_update_progress(progress, 40, "⚡ Initialisation du gradient tape...")
yield None
_update_progress(progress, 45, "🔥 Forward pass en cours...")
yield None
# Le calcul critique commence ici
with tf.GradientTape() as tape:
_update_progress(progress, 50, "📊 Calcul des activations...")
yield None
last_conv_layer_output, preds = grad_model(input_for_model, training=False)
_update_progress(progress, 55, "🎯 Extraction de la classe cible...")
yield None
if isinstance(preds, list):
preds = preds[0]
class_channel = preds[:, int(class_index)]
_update_progress(progress, 60, "⚡ Calcul du gradient...")
yield None
grads = tape.gradient(class_channel, last_conv_layer_output)
if grads is None:
yield img_resized
return
_update_progress(progress, 70, "📊 Pooling des gradients...")
yield None
# Pooling des gradients
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
last_conv_layer_output = last_conv_layer_output[0]
_update_progress(progress, 75, "🎨 Construction de la heatmap...")
yield None
# Construction de la heatmap
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
heatmap = tf.maximum(heatmap, 0)
max_val = tf.math.reduce_max(heatmap)
if max_val == 0:
heatmap = tf.ones_like(heatmap) * 0.5
else:
heatmap = heatmap / max_val
_update_progress(progress, 85, "🎯 Application du colormap...")
yield None
# Conversion et application du colormap
heatmap_np = heatmap.numpy()
heatmap_np = np.clip(heatmap_np.astype(np.float32), 0, 1)
heatmap_resized = cv2.resize(heatmap_np, (img_resized.shape[1], img_resized.shape[0]))
heatmap_uint8 = np.uint8(255 * heatmap_resized)
heatmap_colored = cv2.applyColorMap(heatmap_uint8, cv2.COLORMAP_JET)
_update_progress(progress, 95, "✨ Superposition des images...")
yield None
# Superposition des images
img_bgr = cv2.cvtColor(img_resized, cv2.COLOR_RGB2BGR)
superimposed_img = cv2.addWeighted(img_bgr, 0.6, heatmap_colored, 0.4, 0)
_update_progress(progress, 100, "✅ Grad-CAM terminé !")
# Retour du résultat final
yield cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB)
except Exception as e:
import traceback
traceback.print_exc()
_update_progress(progress, 100, "❌ Erreur lors du calcul")
yield np.array(image_pil)
# ---- PREDICT SINGLE ----
def predict_single(img_input, weights=(0.45, 0.25, 0.30), normalize=True):
if isinstance(img_input, str):
pil_img = Image.open(img_input).convert("RGB")
elif isinstance(img_input, Image.Image):
pil_img = img_input.convert("RGB")
else:
raise ValueError("img_input doit être un chemin (str) ou une image PIL")
preds = {}
if model_xcept is not None:
img_x = np.expand_dims(preprocess_xception(np.array(pil_img.resize((299, 299), resample=Image.BILINEAR))), axis=0)
preds['xception'] = model_xcept.predict(img_x, verbose=0)[0]
if model_resnet50 is not None:
img_r = np.expand_dims(preprocess_resnet(np.array(pil_img.resize((224, 224), resample=Image.BILINEAR))), axis=0)
preds['resnet50'] = model_resnet50.predict(img_r, verbose=0)[0]
if model_densenet is not None:
img_d = np.expand_dims(preprocess_densenet(np.array(pil_img.resize((224, 224), resample=Image.BILINEAR))), axis=0)
preds['densenet201'] = model_densenet.predict(img_d, verbose=0)[0]
ensemble = np.zeros(len(CLASS_NAMES), dtype=np.float32)
if 'xception' in preds: ensemble += weights[0] * preds['xception']
if 'resnet50' in preds: ensemble += weights[1] * preds['resnet50']
if 'densenet201' in preds: ensemble += weights[2] * preds['densenet201']
if 'densenet201' in preds:
mel_idx = label_to_index['mel']
ensemble[mel_idx] = 0.5 * ensemble[mel_idx] + 0.5 * preds['densenet201'][mel_idx]
if normalize:
ensemble = _renorm_safe(ensemble)
preds['ensemble'] = ensemble
return preds
# ---- Helpers Grad-CAM ----
LAST_CONV_LAYERS = {
"xception": "block14_sepconv2_act",
"resnet50": "conv5_block3_out",
"densenet201": "conv5_block32_concat"
}
def _guess_backbone_name(model):
name = (getattr(model, "name", "") or "").lower()
if "xception" in name: return "xception"
if "resnet" in name: return "resnet50"
if "densenet" in name: return "densenet201"
return None
def find_last_dense_layer(model):
for layer in reversed(model.layers):
if isinstance(layer, keras.layers.Dense):
return layer
raise ValueError("Aucune couche Dense trouvée dans le modèle.")
# ---- GRAD-CAM AVEC PROGRESSION ANIMÉE ----
def make_gradcam(image_pil, model, last_conv_layer_name, class_index, progress=None):
"""
Wrapper qui consomme le générateur et retourne le dernier résultat
"""
result = None
for step_result in make_gradcam_with_progress(image_pil, model, last_conv_layer_name, class_index, progress):
if step_result is not None:
result = step_result
return result if result is not None else np.array(image_pil)
# ---- GESTION ASYNCHRONE / ÉTAT ----
current_image = None
current_predictions = None
# ---- Fonctions pour l'UI Gradio ----
def quick_predict_ui(image_pil):
global current_image, current_predictions
if image_pil is None:
return "Veuillez uploader une image.", None, "❌ Erreur: Aucune image fournie."
try:
current_image = image_pil
all_preds = predict_single(image_pil)
current_predictions = all_preds
ensemble_probs = all_preds["ensemble"]
top_class_idx = int(np.argmax(ensemble_probs))
top_class_name = CLASS_NAMES[top_class_idx]
global_diag = diagnosis_map[top_class_name]
confidences = {CLASS_NAMES[i]: float(ensemble_probs[i] * 100) for i in range(len(CLASS_NAMES))}
df = pd.DataFrame.from_dict(confidences, orient='index', columns=['Probabilité']).reset_index().rename(columns={'index': 'Classe'})
df = df.sort_values(by='Probabilité', ascending=False)
df['Pourcentage'] = df['Probabilité'].apply(lambda x: f"{x:.1f}%")
fig = px.bar(df,
x="Classe",
y="Probabilité",
color="Probabilité",
color_continuous_scale=px.colors.sequential.Viridis,
title="Probabilités par classe",
text="Pourcentage")
text_positions = []
for val in df['Probabilité']:
if val <= 10:
text_positions.append("outside")
else:
text_positions.append("inside")
fig.update_traces(textposition=text_positions)
fig.update_layout(xaxis_title="", yaxis_title="Probabilité (%)", height=400)
return f"{global_diag} ({top_class_name.upper()})", fig, "✅ Analyse terminée. Prêt pour Grad-CAM."
except Exception as e:
return f"Erreur: {e}", None, "❌ Erreur lors de l'analyse."
def generate_gradcam_ui_progressive(progress=gr.Progress()):
"""
Version qui utilise un générateur pour progression fluide
"""
global current_image, current_predictions
if current_image is None or current_predictions is None:
return None, "❌ Aucun résultat précédent — lance d'abord l'analyse rapide."
try:
ensemble_probs = current_predictions["ensemble"]
top_class_idx = int(np.argmax(ensemble_probs))
# Sélection des modèles disponibles
candidates = []
if model_xcept is not None:
candidates.append(("xception", model_xcept, current_predictions["xception"][top_class_idx]))
if model_resnet50 is not None:
candidates.append(("resnet50", model_resnet50, current_predictions["resnet50"][top_class_idx]))
if model_densenet is not None:
candidates.append(("densenet201", model_densenet, current_predictions["densenet201"][top_class_idx]))
if not candidates:
return None, "❌ Aucun modèle disponible pour Grad-CAM."
# Choix du meilleur modèle
explainer_model_name, explainer_model, conf = max(candidates, key=lambda t: t[2])
explainer_layer = LAST_CONV_LAYERS.get(explainer_model_name)
# Génération progressive Grad-CAM
gradcam_img = None
for step_result in make_gradcam_with_progress(
current_image,
explainer_model,
explainer_layer,
class_index=top_class_idx,
progress=progress
):
if step_result is not None:
gradcam_img = step_result
if gradcam_img is None:
return None, "❌ Erreur lors de la génération."
return gradcam_img, f"✅ Grad-CAM généré avec {explainer_model_name} (confiance: {conf:.1%})"
except Exception as e:
import traceback
traceback.print_exc()
return None, f"❌ Erreur: {e}"
def generate_gradcam_ui(progress=gr.Progress()):
global current_image, current_predictions
if current_image is None or current_predictions is None:
return None, "❌ Aucun résultat précédent — lance d'abord l'analyse rapide."
try:
ensemble_probs = current_predictions["ensemble"]
top_class_idx = int(np.argmax(ensemble_probs))
candidates = []
if model_xcept is not None:
candidates.append(("xception", model_xcept, current_predictions["xception"][top_class_idx]))
if model_resnet50 is not None:
candidates.append(("resnet50", model_resnet50, current_predictions["resnet50"][top_class_idx]))
if model_densenet is not None:
candidates.append(("densenet201", model_densenet, current_predictions["densenet201"][top_class_idx]))
if not candidates:
return None, "❌ Aucun modèle disponible pour Grad-CAM."
explainer_model_name, explainer_model, conf = max(candidates, key=lambda t: t[2])
explainer_layer = LAST_CONV_LAYERS.get(explainer_model_name)
# Utilisez make_gradcam_with_delays pour une progression fluide
gradcam_img = make_gradcam_with_delays(
current_image,
explainer_model,
explainer_layer,
class_index=top_class_idx,
progress=progress
)
return gradcam_img, f"✅ Grad-CAM généré avec {explainer_model_name} (confiance: {conf:.1%})"
except Exception as e:
import traceback
traceback.print_exc()
return None, f"❌ Erreur: {e}"
# ---- INTERFACE GRADIO ----
example_paths = ["ISIC_0024627.jpg", "ISIC_0025539.jpg", "ISIC_0031410.jpg"]
with gr.Blocks(theme=gr.themes.Soft(), title="Analyse de lésions") as demo:
gr.Markdown("# 🔬 Analyse de lésions cutanées")
models_status = []
if model_resnet50: models_status.append("✅ ResNet50")
if model_densenet: models_status.append("✅ DenseNet201")
if model_xcept: models_status.append("✅ Xception")
gr.Markdown(f"**Modèles chargés:** {', '.join(models_status) if models_status else 'AUCUN'}")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="📸 Uploader une image")
with gr.Row():
quick_btn = gr.Button("⚡ Analyse Rapide", variant="primary")
gradcam_btn = gr.Button("🎯 Carte de chaleur", variant="secondary")
gr.Examples(examples=example_paths, inputs=input_image)
with gr.Column(scale=2):
output_label = gr.Label(label="📊 Diagnostic global")
output_plot = gr.Plot(label="📈 Probabilités")
output_gradcam = gr.Image(label="🔍 Visualisation Grad-CAM")
output_status = gr.Textbox(label="Statut", interactive=False)
quick_btn.click(fn=quick_predict_ui, inputs=input_image, outputs=[output_label, output_plot, output_status])
gradcam_btn.click(fn=generate_gradcam_ui, inputs=[], outputs=[output_gradcam, output_status])
if __name__ == "__main__":
if all(m is None for m in [model_resnet50, model_densenet, model_xcept]):
print("\n\n🚨 ATTENTION: Aucun modèle n'a été chargé. L'application ne fonctionnera pas.\n\n")
demo.launch()