|
import os |
|
import numpy as np |
|
import gradio as gr |
|
import cv2 |
|
import tensorflow as tf |
|
import keras |
|
from keras.models import Model |
|
from keras.preprocessing import image |
|
|
|
from huggingface_hub import hf_hub_download |
|
import pandas as pd |
|
from PIL import Image |
|
import plotly.express as px |
|
import time |
|
import os |
|
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' |
|
|
|
|
|
theme = gr.themes.Soft( |
|
primary_hue="purple", |
|
secondary_hue="yellow", |
|
text_size="sm", |
|
) |
|
|
|
css = """ |
|
/* Police lisible et compatible */ |
|
body { |
|
font-family: Arial, sans-serif !important; |
|
} |
|
|
|
/* Conteneur du diagnostic global */ |
|
.diagnostic-global { |
|
margin-bottom: 15px; |
|
} |
|
|
|
/* Style pour les badges Malin/Bénin */ |
|
.highlight.malin { |
|
background-color: #F54927; |
|
color: white; |
|
padding: 4px 8px; |
|
border-radius: 4px; |
|
display: inline-block; |
|
font-weight: bold; |
|
font-size:24px; |
|
margin: 5px 0; |
|
} |
|
|
|
.highlight.benin { |
|
background-color: #34EA3A; |
|
color: black; |
|
padding: 4px 8px; |
|
border-radius: 4px; |
|
display: inline-block; |
|
font-weight: bold; |
|
font-size:24px; |
|
margin: 5px 0; |
|
} |
|
|
|
/* Conteneur pour le warning */ |
|
.warning-container { |
|
background-color: #f9f9f9; |
|
border-radius: 5px; |
|
padding: 0px; |
|
margin-bottom: 0px; |
|
border: 1px solid #e0e0e0; |
|
} |
|
|
|
/* Message d'avertissement */ |
|
.warning-message { |
|
background-color: #e9d5ff; |
|
border-radius: 3px; |
|
padding: 10px; |
|
border: 1px solid #d4b5ff; |
|
font-size: 14px; |
|
color: #333; |
|
font-family: Arial, sans-serif !important; |
|
} |
|
|
|
|
|
/* Pour les images dans le diagnostic */ |
|
.diagnostic-global img { |
|
max-width: 100%; |
|
height: auto; |
|
float: left; |
|
margin-right: 10px; |
|
margin-bottom: 10px; |
|
} |
|
|
|
.feedback-container { |
|
background-color: #f9f9f9; |
|
border-radius: 5px; |
|
padding: 0px; |
|
margin-bottom: 0px; |
|
border: 1px solid #e0e0e0; |
|
font-size:16px; |
|
font-family: Arial, sans-serif !important; |
|
} |
|
|
|
/* Clearfix pour les flottants */ |
|
.clearfix::after { |
|
content: ""; |
|
display: table; |
|
clear: both; |
|
} |
|
""" |
|
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' |
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' |
|
tf.config.set_visible_devices([], 'GPU') |
|
|
|
|
|
CLASS_NAMES = ['akiec', 'bcc', 'bkl', 'df', 'nv', 'vasc', 'mel'] |
|
label_to_index = {name: i for i, name in enumerate(CLASS_NAMES)} |
|
diagnosis_map = { |
|
'akiec': 'Bénin', 'bcc': 'Malin', 'bkl': 'Bénin', 'df': 'Bénin', |
|
'nv': 'Bénin', 'vasc': 'Bénin', 'mel': 'Malin' |
|
} |
|
description = { |
|
"akiec": "Bénin : AKIEC ou - kératoses solaires - sont des excroissances précancéreuses provoquées par l'exposition solaire prolongée. Le risque de progression d'une Kératose Actinique vers un carcinome épidermoïde (cancer de la peau non mélanome) existe mais reste modéré", |
|
"bcc": "Malin : BCC ou - carcinome basocellulaire - est un type de cancer cutané. C’est le cancer de la peau le plus fréquent. Il se manifeste par la formation d'une masse, d'un bouton ou d'une lésion sur la couche externe de la peau.", |
|
"bkl": "Bénin : BKL ou - kératose séborrhéique - se présente sous la forme d’une lésion pigmentée, en relief, verruqueuse (qui ressemble à une verrue), souvent croûteuse, de plus ou moins grande taille.", |
|
"df": "Bénin : DF ou - dermatofibrome - est une lésion papuleuse ou nodulaire ferme, le plus souvent de petite taille, de couleur rouge marron, de nature fibrohistiocytaire.", |
|
"nv": "Bénin : NV (Nevus) ou le - grain de beauté -, couramment appelés nevus mélanocytaires représentent une accumulation localisée de mélanocytes dans la peau", |
|
"vasc": "Bénin : VASC ou - lésion vasculaire - se traduit par la survenue d’anomalies visibles en surface de la peau et d’aspect variable : rougeurs, taches planes ou en relief, capillaires sanguins apparents", |
|
"mel": "Malin : MEL ou - Mélanome - est un nodule noir ou couleur « peau » présent sur n'importe quelle partie de la peau. Sa consistance est ferme et le nodule peut s'ulcérer, se couvrir d'une croûte, suinter ou saigner." |
|
} |
|
|
|
|
|
def load_models_safely(): |
|
models = {} |
|
try: |
|
print("📥 Téléchargement ResNet50...") |
|
resnet_path = hf_hub_download(repo_id="ericjedha/resnet50", filename="Resnet50.keras") |
|
models['resnet50'] = keras.saving.load_model(resnet_path, compile=False) |
|
print("✅ ResNet50 chargé") |
|
except Exception as e: |
|
models['resnet50'] = None |
|
|
|
try: |
|
print("📥 Téléchargement DenseNet201...") |
|
densenet_path = hf_hub_download(repo_id="ericjedha/densenet201", filename="Densenet201.keras") |
|
models['densenet201'] = keras.saving.load_model(densenet_path, compile=False) |
|
print("✅ DenseNet201 chargé") |
|
except Exception as e: |
|
models['densenet201'] = None |
|
|
|
try: |
|
print("📥 Chargement Xception local...") |
|
if os.path.exists("Xception.keras"): |
|
models['xception'] = keras.saving.load_model("Xception.keras", compile=False) |
|
print("✅ Xception chargé") |
|
else: |
|
models['xception'] = None |
|
except Exception as e: |
|
models['xception'] = None |
|
|
|
loaded = {k: v for k, v in models.items() if v is not None} |
|
if not loaded: |
|
raise Exception("❌ Aucun modèle n'a pu être chargé!") |
|
|
|
print(f"🎯 Modèles chargés: {list(loaded.keys())}") |
|
return models |
|
|
|
try: |
|
models_dict = load_models_safely() |
|
model_resnet50 = models_dict.get('resnet50') |
|
model_densenet = models_dict.get('densenet201') |
|
model_xcept = models_dict.get('xception') |
|
except Exception as e: |
|
print(f"🚨 ERREUR CRITIQUE: {e}") |
|
model_resnet50 = model_densenet = model_xcept = None |
|
|
|
|
|
from tensorflow.keras.applications.xception import preprocess_input as preprocess_xception |
|
from tensorflow.keras.applications.resnet50 import preprocess_input as preprocess_resnet |
|
from tensorflow.keras.applications.densenet import preprocess_input as preprocess_densenet |
|
|
|
|
|
def _renorm_safe(p: np.ndarray) -> np.ndarray: |
|
p = np.clip(p, 0.0, None) |
|
s = np.sum(p) |
|
if s <= 0: |
|
return np.ones_like(p, dtype=np.float32) / len(p) |
|
normalized = p / s |
|
return normalized / np.sum(normalized) if np.sum(normalized) > 1.0001 else normalized |
|
|
|
def get_primary_input_name(model): |
|
if isinstance(model.inputs, list) and len(model.inputs) > 0: |
|
return model.inputs[0].name.split(':')[0] |
|
return "input_1" |
|
|
|
def _update_progress(progress, value, desc=""): |
|
""" |
|
Met à jour la barre de progression. |
|
""" |
|
if progress is not None: |
|
progress(value / 100.0, desc=desc) |
|
|
|
|
|
def predict_single(img_input, weights=(0.45, 0.25, 0.3), normalize=True): |
|
print("🔍 DEBUG GRADIO HARMONISÉ - Début de la prédiction") |
|
|
|
|
|
if isinstance(img_input, str): |
|
|
|
img_path = img_input |
|
print(f"📁 Chargement depuis fichier: {img_path}") |
|
|
|
img_raw_x = image.load_img(img_path, target_size=(299, 299)) |
|
img_raw_r = image.load_img(img_path, target_size=(224, 224)) |
|
img_raw_d = image.load_img(img_path, target_size=(224, 224)) |
|
|
|
else: |
|
|
|
print("📁 Chargement depuis upload Gradio") |
|
|
|
|
|
from io import BytesIO |
|
import PIL.Image |
|
|
|
|
|
if img_input.mode != 'RGB': |
|
img_input = img_input.convert('RGB') |
|
print(f"🔄 Conversion en RGB effectuée") |
|
|
|
|
|
img_raw_x = img_input.resize((299, 299), PIL.Image.Resampling.LANCZOS) |
|
img_raw_r = img_input.resize((224, 224), PIL.Image.Resampling.LANCZOS) |
|
img_raw_d = img_input.resize((224, 224), PIL.Image.Resampling.LANCZOS) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
array_x = image.img_to_array(img_raw_x) |
|
array_r = image.img_to_array(img_raw_r) |
|
array_d = image.img_to_array(img_raw_d) |
|
|
|
print(f"📸 Images loaded:") |
|
print(f" Xception (299x299): {array_x.shape}") |
|
print(f" ResNet (224x224): {array_r.shape}") |
|
print(f" DenseNet (224x224): {array_d.shape}") |
|
|
|
print(f"🔧 Arrays avant preprocessing:") |
|
print(f" X shape: {array_x.shape}, dtype: {array_x.dtype}, range: [{array_x.min()}, {array_x.max()}]") |
|
print(f" R shape: {array_r.shape}, dtype: {array_r.dtype}, range: [{array_r.min()}, {array_r.max()}]") |
|
print(f" D shape: {array_d.shape}, dtype: {array_d.dtype}, range: [{array_d.min()}, {array_d.max()}]") |
|
|
|
|
|
expected_range = (0, 255) |
|
actual_ranges = [ |
|
(array_x.min(), array_x.max()), |
|
(array_r.min(), array_r.max()), |
|
(array_d.min(), array_d.max()) |
|
] |
|
|
|
print(f"🔍 Vérification des ranges:") |
|
for i, (min_val, max_val) in enumerate(actual_ranges): |
|
model_name = ['Xception', 'ResNet', 'DenseNet'][i] |
|
if min_val < expected_range[0] or max_val > expected_range[1]: |
|
print(f" ⚠️ {model_name}: range inhabituel [{min_val}, {max_val}]") |
|
else: |
|
print(f" ✅ {model_name}: range normal [{min_val}, {max_val}]") |
|
|
|
|
|
img_x = np.expand_dims(preprocess_xception(array_x), axis=0) |
|
img_r = np.expand_dims(preprocess_resnet(array_r), axis=0) |
|
img_d = np.expand_dims(preprocess_densenet(array_d), axis=0) |
|
|
|
print(f"🔧 Après preprocessing:") |
|
print(f" Xception range: [{img_x.min():.6f}, {img_x.max():.6f}]") |
|
print(f" ResNet range: [{img_r.min():.6f}, {img_r.max():.6f}]") |
|
print(f" DenseNet range: [{img_d.min():.6f}, {img_d.max():.6f}]") |
|
|
|
|
|
preds = {} |
|
if model_xcept is not None: |
|
preds['xception'] = model_xcept.predict(img_x, verbose=0)[0] |
|
print("\n--- Xception ---") |
|
for i, (class_name, prob) in enumerate(zip(CLASS_NAMES, preds['xception'])): |
|
print(f"{class_name}: {prob*100:.2f}%") |
|
|
|
if model_resnet50 is not None: |
|
preds['resnet50'] = model_resnet50.predict(img_r, verbose=0)[0] |
|
print("\n--- ResNet ---") |
|
for i, (class_name, prob) in enumerate(zip(CLASS_NAMES, preds['resnet50'])): |
|
print(f"{class_name}: {prob*100:.2f}%") |
|
|
|
if model_densenet is not None: |
|
preds['densenet201'] = model_densenet.predict(img_d, verbose=0)[0] |
|
print("\n--- DenseNet ---") |
|
for i, (class_name, prob) in enumerate(zip(CLASS_NAMES, preds['densenet201'])): |
|
print(f"{class_name}: {prob*100:.2f}%") |
|
|
|
|
|
ensemble = np.zeros(len(CLASS_NAMES), dtype=np.float32) |
|
if 'xception' in preds: ensemble += weights[0] * preds['xception'] |
|
if 'resnet50' in preds: ensemble += weights[1] * preds['resnet50'] |
|
if 'densenet201' in preds: ensemble += weights[2] * preds['densenet201'] |
|
|
|
print("\n--- Ensemble avant mel boost ---") |
|
for i, (class_name, prob) in enumerate(zip(CLASS_NAMES, ensemble)): |
|
print(f"{class_name}: {prob*100:.2f}%") |
|
print("Ensemble sum avant mel boost:", np.sum(ensemble)) |
|
|
|
|
|
mel_idx = label_to_index['mel'] |
|
if 'densenet201' in preds: |
|
old_mel_prob = ensemble[mel_idx] |
|
ensemble[mel_idx] = 0.5 * ensemble[mel_idx] + 0.5 * preds['densenet201'][mel_idx] |
|
print(f"\nMel boost: {old_mel_prob*100:.2f}% -> {ensemble[mel_idx]*100:.2f}%") |
|
|
|
print("\n--- Ensemble après mel boost ---") |
|
for i, (class_name, prob) in enumerate(zip(CLASS_NAMES, ensemble)): |
|
print(f"{class_name}: {prob*100:.2f}%") |
|
|
|
if normalize: |
|
ensemble_before_norm = ensemble.copy() |
|
ensemble = _renorm_safe(ensemble) |
|
print("\n--- Ensemble final après normalisation ---") |
|
for i, (class_name, prob) in enumerate(zip(CLASS_NAMES, ensemble)): |
|
print(f"{class_name}: {prob*100:.2f}%") |
|
print("Ensemble sum final:", np.sum(ensemble)) |
|
|
|
preds['ensemble'] = ensemble |
|
return preds |
|
|
|
|
|
|
|
LAST_CONV_LAYERS = { |
|
"xception": "block14_sepconv2_act", |
|
"resnet50": "conv5_block3_out", |
|
"densenet201": "conv5_block32_concat" |
|
} |
|
|
|
def find_last_dense_layer(model): |
|
for layer in reversed(model.layers): |
|
if isinstance(layer, keras.layers.Dense): |
|
return layer |
|
raise ValueError("Aucune couche Dense trouvée dans le modèle.") |
|
|
|
|
|
def make_gradcam(image_pil, model, last_conv_layer_name, class_index, progress=None): |
|
""" |
|
Grad-CAM avec progression fluide grâce aux micro-pauses |
|
""" |
|
if model is None: |
|
return np.array(image_pil) |
|
|
|
try: |
|
steps = [ |
|
(5, "🔄 Initialisation..."), |
|
(10, "🖼️ Analyse de l'image..."), |
|
(15, "⚙️ Configuration du preprocesseur..."), |
|
(20, "📐 Redimensionnement image..."), |
|
(25, "🧠 Configuration du modèle..."), |
|
(30, "🔗 Création du gradient model..."), |
|
(35, "⚡ Préparation du calcul..."), |
|
(40, "🔥 Forward pass..."), |
|
(45, "📊 Calcul des activations..."), |
|
(50, "🎯 Extraction classe cible..."), |
|
(55, "⚡ Calcul du gradient..."), |
|
(60, "📈 Traitement des gradients..."), |
|
(70, "📊 Pooling des gradients..."), |
|
(75, "🎨 Construction heatmap..."), |
|
(80, "🌡️ Normalisation heatmap..."), |
|
(85, "🎯 Application colormap..."), |
|
(90, "🖼️ Redimensionnement final..."), |
|
(95, "✨ Superposition images..."), |
|
(100, "✅ Terminé !") |
|
] |
|
|
|
step = 0 |
|
def next_step(): |
|
nonlocal step |
|
if step < len(steps): |
|
val, desc = steps[step] |
|
_update_progress(progress, val, desc) |
|
time.sleep(0.02) |
|
step += 1 |
|
|
|
next_step() |
|
|
|
|
|
input_size = model.input_shape[1:3] |
|
if 'xception' in model.name.lower(): |
|
preprocessor = preprocess_xception |
|
elif 'resnet50' in model.name.lower(): |
|
preprocessor = preprocess_resnet |
|
elif 'densenet' in model.name.lower(): |
|
preprocessor = preprocess_densenet |
|
else: |
|
preprocessor = preprocess_densenet |
|
|
|
next_step() |
|
next_step() |
|
|
|
|
|
img_np = np.array(image_pil.convert("RGB")) |
|
img_resized = cv2.resize(img_np, input_size) |
|
img_array_preprocessed = preprocessor(np.expand_dims(img_resized, axis=0)) |
|
|
|
next_step() |
|
next_step() |
|
|
|
|
|
try: |
|
conv_layer = model.get_layer(last_conv_layer_name) |
|
except ValueError: |
|
return img_resized |
|
|
|
grad_model = Model(model.inputs, [conv_layer.output, model.output]) |
|
input_name = get_primary_input_name(model) |
|
input_for_model = {input_name: img_array_preprocessed} |
|
|
|
next_step() |
|
next_step() |
|
next_step() |
|
|
|
|
|
with tf.GradientTape() as tape: |
|
next_step() |
|
|
|
last_conv_layer_output, preds = grad_model(input_for_model, training=False) |
|
|
|
next_step() |
|
|
|
if isinstance(preds, list): |
|
preds = preds[0] |
|
class_channel = preds[:, int(class_index)] |
|
|
|
next_step() |
|
|
|
grads = tape.gradient(class_channel, last_conv_layer_output) |
|
if grads is None: |
|
return img_resized |
|
|
|
next_step() |
|
next_step() |
|
|
|
|
|
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) |
|
last_conv_layer_output = last_conv_layer_output[0] |
|
|
|
next_step() |
|
|
|
|
|
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] |
|
heatmap = tf.squeeze(heatmap) |
|
heatmap = tf.maximum(heatmap, 0) |
|
max_val = tf.math.reduce_max(heatmap) |
|
|
|
if max_val == 0: |
|
heatmap = tf.ones_like(heatmap) * 0.5 |
|
else: |
|
heatmap = heatmap / max_val |
|
|
|
next_step() |
|
next_step() |
|
|
|
|
|
heatmap_np = heatmap.numpy() |
|
heatmap_np = np.clip(heatmap_np.astype(np.float32), 0, 1) |
|
|
|
heatmap_resized = cv2.resize(heatmap_np, (img_resized.shape[1], img_resized.shape[0])) |
|
heatmap_uint8 = np.uint8(255 * heatmap_resized) |
|
heatmap_colored = cv2.applyColorMap(heatmap_uint8, cv2.COLORMAP_JET) |
|
|
|
next_step() |
|
next_step() |
|
|
|
|
|
img_bgr = cv2.cvtColor(img_resized, cv2.COLOR_RGB2BGR) |
|
superimposed_img = cv2.addWeighted(img_bgr, 0.6, heatmap_colored, 0.4, 0) |
|
|
|
next_step() |
|
|
|
return cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB) |
|
|
|
except Exception as e: |
|
import traceback |
|
traceback.print_exc() |
|
_update_progress(progress, 100, "❌ Erreur") |
|
return np.array(image_pil) |
|
|
|
|
|
current_image = None |
|
current_predictions = None |
|
|
|
|
|
import plotly.graph_objects as go |
|
import numpy as np |
|
import gradio as gr |
|
|
|
def quick_predict_ui(image_pil): |
|
global current_image, current_predictions |
|
if image_pil is None: |
|
|
|
empty_fig = go.Figure() |
|
empty_fig.update_layout( |
|
title="Veuillez uploader une image pour voir les probabilités", |
|
height=450, |
|
template="plotly_white", |
|
showlegend=False |
|
) |
|
|
|
return ( |
|
'<div class="diagnostic-global"><h2>Veuillez uploader une image.</h2></div>', |
|
"", |
|
gr.update(value="", visible=False), |
|
empty_fig, |
|
"❌ Erreur: Aucune image fournie." |
|
) |
|
|
|
try: |
|
current_image = image_pil |
|
all_preds = predict_single(image_pil) |
|
current_predictions = all_preds |
|
ensemble_probs = all_preds["ensemble"] |
|
top_class_idx = int(np.argmax(ensemble_probs)) |
|
top_class_name = CLASS_NAMES[top_class_idx] |
|
global_diag = diagnosis_map[top_class_name] |
|
|
|
|
|
mel_idx = CLASS_NAMES.index("mel") |
|
mel_prob = ensemble_probs[mel_idx] * 100 |
|
|
|
|
|
desc_top = description.get(top_class_name, "") |
|
|
|
|
|
if global_diag == "Malin": |
|
global_diag_html = f''' |
|
<div class="diagnostic-global clearfix"> |
|
<img src="https://huggingface.co/spaces/ericjedha/skin_care/resolve/main/mel.webp" width="150" style="float:left;margin-right:10px;"> |
|
<div> |
|
<span style="font-size:16px;font-weight:bold;">Diagnostic Global</span><br> |
|
<div class="highlight malin"> |
|
{global_diag} : {ensemble_probs[top_class_idx]*100:.2f}% ▪ {top_class_name.upper()} |
|
</div> |
|
</div> |
|
</div> |
|
''' |
|
else: |
|
img_src = "non-mel.webp" if global_diag == "Bénin" else "mel.webp" |
|
global_diag_html = f''' |
|
<div class="diagnostic-global clearfix"> |
|
<img src="https://huggingface.co/spaces/ericjedha/skin_care/resolve/main/{img_src}" width="150" style="float:left;margin-right:10px;"> |
|
<div> |
|
<span style="font-size:16px;font-weight:bold;">Diagnostic Global</span><br> |
|
<div class="highlight benin"> |
|
{global_diag} : {ensemble_probs[top_class_idx]*100:.2f}% ▪ {top_class_name.upper()} |
|
</div> |
|
</div> |
|
</div> |
|
''' |
|
|
|
|
|
output_text_html = f'<div class="warning-message"><strong>Explication du résultat</strong> : {desc_top}</div>' |
|
|
|
|
|
warning_visible = False |
|
warning_html = "" |
|
if mel_prob > 5 and top_class_name != "mel": |
|
warning_html = f''' |
|
<div class="warning-message"> |
|
⚠️ Le modèle a détecté un risque modéré de mélanome ({mel_prob:.1f}%). |
|
Veuillez consulter votre médecin pour lever le doute. |
|
</div> |
|
''' |
|
warning_visible = True |
|
|
|
|
|
probabilities = [round(ensemble_probs[i] * 100, 2) for i in range(len(CLASS_NAMES))] |
|
|
|
|
|
colors = ['#ff6b6b' if name == top_class_name else '#4ecdc4' for name in CLASS_NAMES] |
|
|
|
fig = go.Figure(data=[ |
|
go.Bar( |
|
x=CLASS_NAMES, |
|
y=probabilities, |
|
text=[f'{p:.2f}%' for p in probabilities], |
|
textposition='outside', |
|
marker_color=colors, |
|
hovertemplate='<b>%{x}</b><br>Probabilité: %{y:.2f}%<extra></extra>' |
|
) |
|
]) |
|
|
|
fig.update_layout( |
|
|
|
xaxis_title="Classes", |
|
yaxis_title="Probabilité (%)", |
|
yaxis=dict(range=[0, max(probabilities) * 1.15]), |
|
height=450, |
|
template="plotly_white", |
|
showlegend=False, |
|
font=dict(size=12), |
|
margin=dict(l=50, r=50, t=70, b=100) |
|
) |
|
|
|
|
|
fig.update_xaxes(tickangle=45) |
|
|
|
return ( |
|
global_diag_html, |
|
output_text_html, |
|
gr.update(value=warning_html, visible=warning_visible), |
|
fig, |
|
"✅ Analyse terminée." |
|
) |
|
|
|
except Exception as e: |
|
|
|
error_fig = go.Figure() |
|
error_fig.update_layout( |
|
title=f"Erreur lors de la création du graphique: {str(e)}", |
|
height=450, |
|
template="plotly_white", |
|
showlegend=False |
|
) |
|
|
|
return ( |
|
f'<div class="diagnostic-global"><h2>Erreur: {str(e)}</h2></div>', |
|
"", |
|
gr.update(value=f''' |
|
<div class="warning-message" style="background-color:#ffebee;border:1px solid #ef9a9a;"> |
|
❌ Une erreur est survenue : {str(e)} |
|
</div> |
|
''', visible=True), |
|
error_fig, |
|
f"❌ Erreur: {str(e)}" |
|
) |
|
|
|
def generate_gradcam_ui(progress=gr.Progress()): |
|
global current_image, current_predictions |
|
if current_image is None or current_predictions is None: |
|
return None, "❌ Aucun résultat précédent — lance d'abord l'analyse rapide." |
|
|
|
try: |
|
ensemble_probs = current_predictions["ensemble"] |
|
top_class_idx = int(np.argmax(ensemble_probs)) |
|
|
|
|
|
candidates = [] |
|
if model_xcept is not None: |
|
candidates.append(("xception", model_xcept, current_predictions["xception"][top_class_idx])) |
|
if model_resnet50 is not None: |
|
candidates.append(("resnet50", model_resnet50, current_predictions["resnet50"][top_class_idx])) |
|
if model_densenet is not None: |
|
candidates.append(("densenet201", model_densenet, current_predictions["densenet201"][top_class_idx])) |
|
|
|
if not candidates: |
|
return None, "❌ Aucun modèle disponible pour Grad-CAM." |
|
|
|
|
|
explainer_model_name, explainer_model, conf = max(candidates, key=lambda t: t[2]) |
|
explainer_layer = LAST_CONV_LAYERS.get(explainer_model_name) |
|
|
|
|
|
gradcam_img = make_gradcam( |
|
current_image, |
|
explainer_model, |
|
explainer_layer, |
|
class_index=top_class_idx, |
|
progress=progress |
|
) |
|
|
|
return gradcam_img, f"✅ Grad-CAM généré avec {explainer_model_name} (confiance: {conf:.1%})" |
|
|
|
except Exception as e: |
|
import traceback |
|
traceback.print_exc() |
|
return None, f"❌ Erreur: {e}" |
|
|
|
|
|
|
|
example_paths = ["ISIC_0024627.jpg", "ISIC_0025539.jpg", "ISIC_0031410.jpg"] |
|
|
|
import pandas as pd |
|
import gradio as gr |
|
|
|
with gr.Blocks(theme=theme, title="Analyse de lésions", css=css) as demo: |
|
gr.Markdown("# 🔬 Skin Care : analyse de lésions cutanées") |
|
|
|
models_status = [] |
|
if model_resnet50: |
|
models_status.append("☑ ResNet50") |
|
if model_densenet: |
|
models_status.append("☑ DenseNet201") |
|
if model_xcept: |
|
models_status.append("☑ Xception") |
|
|
|
gr.Markdown(f"**Avertissement 🚨** cette application est un projet d'étudiant et ne doit être utilisé qu'à titre informatif. **Seul votre médecin est habilité à vous donner un diagnostic**.") |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
input_image = gr.Image(type="pil", label="📸 Uploader une image") |
|
|
|
with gr.Row(): |
|
quick_btn = gr.Button("1️⃣ Analyse Rapide (~ 10s)", variant="primary") |
|
gradcam_btn = gr.Button("2️⃣ Carte colorée (~ 60s) ", variant="secondary") |
|
|
|
gr.Examples(examples=example_paths, inputs=input_image) |
|
output_gradcam = gr.Image(label="🔍 Carte Colorée Grad-CAM") |
|
output_status = gr.Textbox(label="Statut", interactive=False) |
|
|
|
|
|
with gr.Column(scale=2): |
|
output_label = gr.HTML( |
|
value='<h2 class="output-class">Pour obtenir un diagnostic, uploadez une image ou prenez une photo.</h2>', |
|
elem_classes="diagnostic-global" |
|
) |
|
|
|
|
|
output_text = gr.HTML( |
|
value="", |
|
elem_classes="warning-container" |
|
) |
|
|
|
output_warning = gr.HTML( |
|
value="", |
|
elem_classes="warning-container", |
|
visible=False |
|
) |
|
|
|
|
|
|
|
initial_df = pd.DataFrame({ |
|
'Classes': CLASS_NAMES, |
|
'Probabilités (%)': [0] * len(CLASS_NAMES) |
|
}) |
|
|
|
|
|
output_plot = gr.Plot(label="Probabilités par classe") |
|
|
|
gr.Markdown(f"Ensemble de modèles utilisés : {', '.join(models_status) if models_status else 'AUCUN'}") |
|
gr.HTML(value=""" |
|
|
|
<strong>Dataset utilisé</strong> pour l'entrainement des modèles de Machine Learning : HAM10000, ce dataset HAM10000 a été créé par une équipe internationale dirigée par des chercheurs autrichiens, allemands et australiens. |
|
|
|
<br> |
|
<strong> RGPD & Digital Act </strong> : |
|
Ce dataset ne peut pas être utilisé pour des cas réels aujourd'hui notamment du fait qu'il ne comporte qu'essentiellement des peaux de populations européennes (allemands et autrichiens). <br>Cette application ne collecte pas vos données personnelles. <b>Les images uploadées ne sont pas stockées</b>. <br>La politique de Cookies 🍪 est gérée par <a href='https://huggingface.co/privacy'>Hugging Face disponible ici</a>. |
|
|
|
""") |
|
|
|
|
|
quick_btn.click( |
|
fn=quick_predict_ui, |
|
inputs=input_image, |
|
outputs=[output_label, output_text, output_warning, output_plot, output_status] |
|
) |
|
|
|
gradcam_btn.click( |
|
fn=generate_gradcam_ui, |
|
inputs=[], |
|
outputs=[output_gradcam, output_status] |
|
) |
|
|
|
demo.launch() |