import gradio as gr from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification def check_spam(text): classifier = pipeline("text-classification") model_name = "ericjedha/spammy_overfit" #ModernBert model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) classifier = pipeline("text-classification", model = model, tokenizer = tokenizer) result = classifier(text)[0] # Récupère le premier résultat return f"Label: {result['label']}, Score: {result['score']:.2f}" # Formatage du résultat with gr.Blocks() as demo: with gr.Row(): with gr.Column(): sms = gr.Textbox(label="SMS à checker") spam_check_btn = gr.Button("Check") with gr.Column(): # Correction de l'indentation result = gr.Textbox(label="Résultat") spam_check_btn.click(check_spam, inputs=sms, outputs=result) # Correction de `input` -> `inputs` demo.launch(share=True)