import gradio as gr from transformers import pipeline from PIL import Image import torch # Load your model device = 0 if torch.cuda.is_available() else -1 pipe = pipeline("image-classification", model="beingamit99/car_damage_detection", device=device) def predict_damage(image): if image.mode != "RGB": image = image.convert("RGB") results = pipe(image) return results # Create the Gradio interface iface = gr.Interface( fn=predict_damage, inputs=gr.Image(type="pil"), outputs=gr.JSON(), title="Car Damage Detection API", description="Upload an image of a car to detect damages." ) if __name__ == "__main__": iface.launch()