SingingSDS / evaluation /svs_eval.py
jhansss's picture
update configurations, including Yaoyin character prompt, default setup, svs model choices
48162db
raw
history blame
5.82 kB
import librosa
import soundfile as sf
import numpy as np
import torch
import uuid
from pathlib import Path
# ----------- Initialization -----------
def init_singmos():
print("[Init] Loading SingMOS...")
return torch.hub.load(
"South-Twilight/SingMOS:v0.3.0", "singing_ssl_mos", trust_repo=True, cache_dir="cache"
)
def init_basic_pitch():
print("[Init] Loading BasicPitch...")
from basic_pitch.inference import predict
return predict
def init_per():
print("[Init] Loading PER...")
from transformers import pipeline
import jiwer
asr_pipeline = pipeline(
"automatic-speech-recognition", model="openai/whisper-large-v3-turbo"
)
return {
"asr_pipeline": asr_pipeline,
"jiwer": jiwer,
}
def init_audiobox_aesthetics():
print("[Init] Loading AudioboxAesthetics...")
from audiobox_aesthetics.infer import initialize_predictor
predictor = initialize_predictor()
return predictor
# ----------- Evaluation -----------
def eval_singmos(audio_path, predictor):
audio_array, sr = librosa.load(audio_path, sr=44100)
wav = librosa.resample(audio_array, orig_sr=sr, target_sr=16000)
wav_tensor = torch.from_numpy(wav).unsqueeze(0)
length_tensor = torch.tensor([wav_tensor.shape[1]])
score = predictor(wav_tensor, length_tensor)
return {"singmos": float(score)}
def eval_melody_metrics(audio_path, pitch_extractor):
model_output, midi_data, note_events = pitch_extractor(audio_path)
metrics = {}
assert (
len(midi_data.instruments) == 1
), f"Detected {len(midi_data.instruments)} instruments for {audio_path}"
midi_notes = midi_data.instruments[0].notes
melody = [note.pitch for note in midi_notes]
if len(melody) == 0:
print(f"No notes detected in {audio_path}")
return {}
intervals = [abs(melody[i + 1] - melody[i]) for i in range(len(melody) - 1)]
metrics["pitch_range"] = max(melody) - min(melody)
if len(intervals) > 0:
metrics["interval_mean"] = np.mean(intervals)
metrics["interval_std"] = np.std(intervals)
metrics["interval_large_jump_ratio"] = np.mean([i > 5 for i in intervals])
metrics["dissonance_rate"] = compute_dissonance_rate(intervals)
return metrics
def compute_dissonance_rate(intervals, dissonant_intervals={1, 2, 6, 10, 11}):
dissonant = [i % 12 in dissonant_intervals for i in intervals]
return np.mean(dissonant) if intervals else np.nan
def pypinyin_g2p_phone_without_prosody(text):
from pypinyin import Style, pinyin
from pypinyin.style._utils import get_finals, get_initials
phones = []
for phone in pinyin(text, style=Style.NORMAL, strict=False):
initial = get_initials(phone[0], strict=False)
final = get_finals(phone[0], strict=False)
if len(initial) != 0:
if initial in ["x", "y", "j", "q"]:
if final == "un":
final = "vn"
elif final == "uan":
final = "van"
elif final == "u":
final = "v"
if final == "ue":
final = "ve"
phones.append(initial)
phones.append(final)
else:
phones.append(final)
return phones
def eval_per(audio_path, reference_text, evaluator):
audio_array, sr = librosa.load(audio_path, sr=16000)
asr_result = evaluator["asr_pipeline"](
audio_array, generate_kwargs={"language": "mandarin"}
)["text"]
hyp_pinyin = pypinyin_g2p_phone_without_prosody(asr_result)
ref_pinyin = pypinyin_g2p_phone_without_prosody(reference_text)
per = evaluator["jiwer"].wer(" ".join(ref_pinyin), " ".join(hyp_pinyin))
return {"per": per}
def eval_aesthetic(audio_path, predictor):
score = predictor.forward([{"path": str(audio_path)}])
return score
# ----------- Main Function -----------
def load_evaluators(config):
loaded = {}
if "singmos" in config:
loaded["singmos"] = init_singmos()
if "melody" in config:
loaded["melody"] = init_basic_pitch()
if "per" in config:
loaded["per"] = init_per()
if "aesthetic" in config:
loaded["aesthetic"] = init_audiobox_aesthetics()
return loaded
def run_evaluation(audio_path, evaluators, **kwargs):
results = {}
if "singmos" in evaluators:
results.update(eval_singmos(audio_path, evaluators["singmos"]))
if "per" in evaluators:
results.update(eval_per(audio_path, kwargs["llm_text"], evaluators["per"]))
if "melody" in evaluators:
results.update(eval_melody_metrics(audio_path, evaluators["melody"]))
if "aesthetic" in evaluators:
results.update(eval_aesthetic(audio_path, evaluators["aesthetic"])[0])
return results
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--wav_path", type=str, required=True)
parser.add_argument("--results_csv", type=str, required=True)
parser.add_argument("--evaluators", type=str, default="singmos,melody,aesthetic")
args = parser.parse_args()
evaluators = load_evaluators(args.evaluators.split(","))
results = run_evaluation(args.wav_path, evaluators)
print(results)
with open(args.results_csv, "a") as f:
header = "file," + ",".join(results.keys()) + "\n"
if f.tell() == 0:
f.write(header)
else:
with open(args.results_csv, "r") as f2:
file_header = f2.readline()
if file_header != header:
raise ValueError(f"Header mismatch: {file_header} vs {header}")
line = (
",".join([str(args.wav_path)] + [str(v) for v in results.values()]) + "\n"
)
f.write(line)