Spaces:
Running
Running
Move model downloading to initialization stage
Browse files
app.py
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
import numpy as np
|
| 4 |
-
import torch
|
| 5 |
import torchaudio
|
| 6 |
from typing import Tuple, Optional
|
| 7 |
import soundfile as sf
|
| 8 |
from s2st_inference import s2st_inference
|
|
|
|
| 9 |
|
| 10 |
SAMPLE_RATE = 16000
|
| 11 |
MAX_INPUT_LENGTH = 60 # seconds
|
|
@@ -19,85 +18,83 @@ NGPU = 0
|
|
| 19 |
BEAM_SIZE = 1
|
| 20 |
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
beam_size=BEAM_SIZE,
|
| 86 |
-
)
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
-
|
| 101 |
|
| 102 |
|
| 103 |
def update_audio_ui(audio_source: str) -> Tuple[dict, dict]:
|
|
@@ -109,6 +106,8 @@ def update_audio_ui(audio_source: str) -> Tuple[dict, dict]:
|
|
| 109 |
|
| 110 |
|
| 111 |
def main():
|
|
|
|
|
|
|
| 112 |
with gr.Blocks() as demo:
|
| 113 |
with gr.Group():
|
| 114 |
with gr.Row() as audio_box:
|
|
@@ -153,7 +152,7 @@ def main():
|
|
| 153 |
)
|
| 154 |
|
| 155 |
btn.click(
|
| 156 |
-
fn=s2st,
|
| 157 |
inputs=[
|
| 158 |
audio_source,
|
| 159 |
input_audio_mic,
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
| 3 |
import torchaudio
|
| 4 |
from typing import Tuple, Optional
|
| 5 |
import soundfile as sf
|
| 6 |
from s2st_inference import s2st_inference
|
| 7 |
+
from utils import download_model
|
| 8 |
|
| 9 |
SAMPLE_RATE = 16000
|
| 10 |
MAX_INPUT_LENGTH = 60 # seconds
|
|
|
|
| 18 |
BEAM_SIZE = 1
|
| 19 |
|
| 20 |
|
| 21 |
+
class App:
|
| 22 |
+
def __init__(self):
|
| 23 |
+
# Download models
|
| 24 |
+
os.makedirs(S2UT_DIR, exist_ok=True)
|
| 25 |
+
os.makedirs(VOCODER_DIR, exist_ok=True)
|
| 26 |
+
|
| 27 |
+
self.s2ut_path = download_model(S2UT_TAG, S2UT_DIR)
|
| 28 |
+
self.vocoder_path = download_model(VOCODER_TAG, VOCODER_DIR)
|
| 29 |
+
|
| 30 |
+
def s2st(
|
| 31 |
+
self,
|
| 32 |
+
audio_source: str,
|
| 33 |
+
input_audio_mic: Optional[str],
|
| 34 |
+
input_audio_file: Optional[str],
|
| 35 |
+
):
|
| 36 |
+
if audio_source == 'file':
|
| 37 |
+
input_path = input_audio_file
|
| 38 |
+
else:
|
| 39 |
+
input_path = input_audio_mic
|
| 40 |
+
|
| 41 |
+
if input_path is None:
|
| 42 |
+
gr.Error(f"Input audio is too long. Truncated to {MAX_INPUT_LENGTH} seconds.")
|
| 43 |
+
return (None, None), None
|
| 44 |
+
|
| 45 |
+
orig_wav, orig_sr = torchaudio.load(input_path)
|
| 46 |
+
wav = torchaudio.functional.resample(orig_wav, orig_freq=orig_sr, new_freq=SAMPLE_RATE)
|
| 47 |
+
max_length = int(MAX_INPUT_LENGTH * SAMPLE_RATE)
|
| 48 |
+
if wav.shape[1] > max_length:
|
| 49 |
+
wav = wav[:, :max_length]
|
| 50 |
+
gr.Warning(f"Input audio is too long. Truncated to {MAX_INPUT_LENGTH} seconds.")
|
| 51 |
+
|
| 52 |
+
wav = wav[0] # mono
|
| 53 |
+
|
| 54 |
+
# Temporary change cwd to model dir so that it loads correctly
|
| 55 |
+
cwd = os.getcwd()
|
| 56 |
+
os.chdir(self.s2ut_path)
|
| 57 |
+
|
| 58 |
+
# Translate wav
|
| 59 |
+
out_wav = s2st_inference(
|
| 60 |
+
wav,
|
| 61 |
+
train_config=os.path.join(
|
| 62 |
+
self.s2ut_path,
|
| 63 |
+
'exp',
|
| 64 |
+
's2st_train_s2st_discrete_unit_raw_fbank_es_en',
|
| 65 |
+
'config.yaml',
|
| 66 |
+
),
|
| 67 |
+
model_file=os.path.join(
|
| 68 |
+
self.s2ut_path,
|
| 69 |
+
'exp',
|
| 70 |
+
's2st_train_s2st_discrete_unit_raw_fbank_es_en',
|
| 71 |
+
'500epoch.pth',
|
| 72 |
+
),
|
| 73 |
+
vocoder_file=os.path.join(
|
| 74 |
+
self.vocoder_path,
|
| 75 |
+
'checkpoint-450000steps.pkl',
|
| 76 |
+
),
|
| 77 |
+
vocoder_config=os.path.join(
|
| 78 |
+
self.vocoder_path,
|
| 79 |
+
'config.yml',
|
| 80 |
+
),
|
| 81 |
+
ngpu=NGPU,
|
| 82 |
+
beam_size=BEAM_SIZE,
|
| 83 |
+
)
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
# Restore working directory
|
| 86 |
+
os.chdir(cwd)
|
| 87 |
|
| 88 |
+
# Save result
|
| 89 |
+
output_path = 'output.wav'
|
| 90 |
+
sf.write(
|
| 91 |
+
output_path,
|
| 92 |
+
out_wav,
|
| 93 |
+
16000,
|
| 94 |
+
"PCM_16",
|
| 95 |
+
)
|
| 96 |
|
| 97 |
+
return output_path, f'Source: {audio_source}'
|
| 98 |
|
| 99 |
|
| 100 |
def update_audio_ui(audio_source: str) -> Tuple[dict, dict]:
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
def main():
|
| 109 |
+
app = App()
|
| 110 |
+
|
| 111 |
with gr.Blocks() as demo:
|
| 112 |
with gr.Group():
|
| 113 |
with gr.Row() as audio_box:
|
|
|
|
| 152 |
)
|
| 153 |
|
| 154 |
btn.click(
|
| 155 |
+
fn=app.s2st,
|
| 156 |
inputs=[
|
| 157 |
audio_source,
|
| 158 |
input_audio_mic,
|
utils.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def download_model(tag: str, out_dir: str):
|
| 2 |
+
from huggingface_hub import snapshot_download
|
| 3 |
+
|
| 4 |
+
return snapshot_download(repo_id=tag, local_dir=out_dir)
|