etadevosyan commited on
Commit
611aab9
·
verified ·
1 Parent(s): f0abac2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -7,25 +7,23 @@ from service_dops_api.dops_config import ServiceDopsConfig
7
  from service_dops_api.dops_classifier import DopsClassifier
8
  import json
9
  HF_TOKEN = os.getenv('HF_TOKEN')
10
- tokenizer_cat = BertTokenizer.from_pretrained("warleagle/service_name_categorizer",
11
  token=HF_TOKEN)
12
- model_cat = BertForSequenceClassification.from_pretrained('warleagle/service_name_categorizer',token=HF_TOKEN)
13
 
14
  clf_cat = pipeline("text-classification", model=model_cat, tokenizer=tokenizer_cat)
15
 
16
- id2label_cat = pd.read_pickle('id2label_service_categoriser.pickle')
17
 
18
- tokenizer_spec = BertTokenizer.from_pretrained("warleagle/specialists_categorizer_model",
19
  token=HF_TOKEN)
20
- model_spec = BertForSequenceClassification.from_pretrained('warleagle/specialists_categorizer_model',token=HF_TOKEN)
21
 
22
  clf_spec = pipeline("text-classification", model=model_spec, tokenizer=tokenizer_spec)
23
 
24
  id2label_spec = pd.read_pickle('id2label_spec_categoriser.pickle')
25
  def categoriser_predict(input_text):
26
  predictions = clf_cat(input_text)
27
- numeric_label = int(predictions[0]['label'].split("_")[1])
28
- text_label = id2label_cat[numeric_label]
29
  return text_label
30
  def doctor_spec_predict(input_text):
31
  predictions = clf_spec(input_text)
 
7
  from service_dops_api.dops_classifier import DopsClassifier
8
  import json
9
  HF_TOKEN = os.getenv('HF_TOKEN')
10
+ tokenizer_cat = BertTokenizer.from_pretrained("etadevosyan/service_categorizer_v2",
11
  token=HF_TOKEN)
12
+ model_cat = BertForSequenceClassification.from_pretrained('etadevosyan/service_categorizer_v2',token=HF_TOKEN)
13
 
14
  clf_cat = pipeline("text-classification", model=model_cat, tokenizer=tokenizer_cat)
15
 
 
16
 
17
+ tokenizer_spec = BertTokenizer.from_pretrained("etadevosyan/specialists_categorizer_model",
18
  token=HF_TOKEN)
19
+ model_spec = BertForSequenceClassification.from_pretrained('etadevosyan/specialists_categorizer_model',token=HF_TOKEN)
20
 
21
  clf_spec = pipeline("text-classification", model=model_spec, tokenizer=tokenizer_spec)
22
 
23
  id2label_spec = pd.read_pickle('id2label_spec_categoriser.pickle')
24
  def categoriser_predict(input_text):
25
  predictions = clf_cat(input_text)
26
+ text_label = predictions[0]['label']
 
27
  return text_label
28
  def doctor_spec_predict(input_text):
29
  predictions = clf_spec(input_text)