Upload 2 files
Browse files- app.py +41 -0
- mnist2.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
class CNN(nn.Module):
|
6 |
+
def __init__(self):
|
7 |
+
super(CNN,self).__init__()
|
8 |
+
|
9 |
+
self.conv1 = nn.Sequential(
|
10 |
+
nn.Conv2d(1,16,5,stride=1,padding=2),
|
11 |
+
nn.ReLU(),
|
12 |
+
nn.MaxPool2d(kernel_size=2),
|
13 |
+
)
|
14 |
+
self.conv2 = nn.Sequential(
|
15 |
+
nn.Conv2d(16,32,5,1,2),
|
16 |
+
nn.ReLU(),
|
17 |
+
nn.MaxPool2d(2),
|
18 |
+
)
|
19 |
+
self.out = nn.Linear(32*7*7,10)
|
20 |
+
|
21 |
+
def forward(self,x):
|
22 |
+
x=self.conv1(x)
|
23 |
+
x=self.conv2(x)
|
24 |
+
x = x.view(-1,32*7*7)
|
25 |
+
return self.out(x)
|
26 |
+
|
27 |
+
model = CNN()
|
28 |
+
model.load_state_dict(torch.load('mnist2.pkl',map_location=torch.device('cpu')))
|
29 |
+
model.eval()
|
30 |
+
|
31 |
+
def predict(img):
|
32 |
+
x = torch.tensor(img, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
|
33 |
+
with torch.no_grad():
|
34 |
+
pred = model(x)[0]
|
35 |
+
return int(pred.argmax())
|
36 |
+
|
37 |
+
|
38 |
+
gr.Interface(fn=predict,
|
39 |
+
inputs="sketchpad",
|
40 |
+
outputs="label",
|
41 |
+
).launch()
|
mnist2.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1449c400c6ae2b041b707b6685f5c71dcf81e4ca9fb511547fa5a23c0552f2d0
|
3 |
+
size 117783
|