import torch from torch import nn import gradio as gr class CNN(nn.Module): def __init__(self): super(CNN,self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(1,16,5,stride=1,padding=2), nn.ReLU(), nn.MaxPool2d(kernel_size=2), ) self.conv2 = nn.Sequential( nn.Conv2d(16,32,5,1,2), nn.ReLU(), nn.MaxPool2d(2), ) self.out = nn.Linear(32*7*7,10) def forward(self,x): x=self.conv1(x) x=self.conv2(x) x = x.view(-1,32*7*7) return self.out(x) model = CNN() model.load_state_dict(torch.load('mnist2.pkl',map_location=torch.device('cpu'))) model.eval() def predict(img): x = torch.tensor(img, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255. with torch.no_grad(): pred = model(x)[0] return int(pred.argmax()) gr.Interface(fn=predict, inputs="sketchpad", outputs="label", ).launch()